多重散乱理論による Co-C₆₀ 薄膜の XAS 解析

北條育子¹,松本吉弘²,丸山 喬¹,永松伸一³,圓谷志郎²,境 誠司²,小西健久¹,藤川高志¹ ¹千葉大学大学院融合科学研究科,²日本原子力研究開発機構,³電気通信大学燃料電池イノベーション研究センター

Multiple Scattering Approach to XAS for Co-C₆₀ Films

Ikuko HOJO¹, Yoshihiro MATSUMOTO², Takashi MARUYAMA¹, Shin-ichi NAGAMATSU³, Shiro ENTANI², Seiji SAKAI², Takehisa KONISHI¹, Takashi FUJIKAWA¹

> ¹Graduate School of Advanced Integration Science, Chiba University ²Advanced Science Research Center, Japan Atomic Energy Agency ³Innovation Research Center for Fuel Cells, The University of Electro-Communications

1. はじめに

近年,電子の持つ電荷のみならず,スピンの向きを制御 して輸送・識別することで革新的な電子デバイスの開発を 目指す「スピントロニクス」という分野が大変注目されて いる。スピントロニクス研究は主に無機系材料を中心に行 われてきたが,今世紀に入り,有機分子が長い時間・距離 に渡ってスピン状態を保持できうること,さらに分子性電 子状態を利用したスピン輸送制御などの可能性から,有機 分子によるスピントロニクス,「分子スピントロニクス」 への関心が高まっている。磁気抵抗効果を示す有機分子 -遷移金属系に関しては幾つかの報告がされているが [1-3], 特に Co-C₆₀ 薄膜は境らによって低温で最大 90% に達する 巨大トンネル磁気抵抗 (TMR)効果を示すことが明らか になっている [4]。

Co-C₆₀ 薄膜は、C₆₀ 分子とCoを超高真空下で基板上に 共蒸着させて作成された。Co-C₆₀ 薄膜は、Coの含有量 x(Co_x-C₆₀) が $x \le 5$ の場合はCo-C₆₀ 化合物が生成し、x > 5 で はCo-C₆₀ 化合物中のCo 濃度が飽和に達することで、Fig. 1 に示すようなCo-C₆₀ 化合物中にCoナノ粒子が析出した 状態、いわゆるグラニュラー構造をとることが分かってい る [5]。また陽電子消滅分光から、Co-C₆₀ 化合物の構造は xの増加と共にCo原子がC₆₀ 分子間を架橋していき、三 次元的に成長していくと考えられている [6]。

Co-C₆₀薄膜では、Co-C₆₀化合物層で隔てられた Co ナ

Figure 1

The schematic illustration of Co-C_{60} thin films. Co nanoparticles are dispersed in Co-C_{60} compound matrix (granular structure) [5].

Figure 2 Schematics of TMR effect in Co-C₆₀ granular films.

ノ粒子間を電子がトンネル伝導することで電流が流れる (Fig. 2)。磁場を加えて Coナノ粒子の磁化方向を揃えた 場合、トンネル伝導が起こり易くなるため薄膜の電気抵抗 は小さくなる。一方、磁化方向が揃っていない場合、トン ネル伝導の確率が低くなるため薄膜の電気抵抗は大きく なる。このように Coナノ粒子の磁化方向に依存して電気 抵抗が変化することで TMR 効果が生じる。グラニュラー 薄膜の TMR 効果の大きさ (磁気抵抗率, MR) は, Julliere や Inoue らの理論モデルから MR = $m^2 P^2 / (1+m^2 P^2), m = M /$ M_{st}の式で表わされる [7-8]。m は飽和磁化 (M_{tot}) に対して 系の磁化 (M) がどの程度の割合で揃っているかの度合い, Pは伝導電子のスピン偏極率を示す。Co-C₆₀薄膜で観測さ れた MR の値は, Co ナノ粒子のスピン偏極率 (P=~40%) から予想される値(MR=~14%)よりも著しく大きく,特 異なスピン輸送現象が生じていることが推察された。松本 らは x の異なる Co_x-C₆₀ 薄膜に対して X 線吸収分光 (XAS) 測定を行い、電子・スピン状態に関して解析を行った [9]。 Co L₂₃-edge X 線磁気円二色性(XMCD)の解析から、Co-C₆₀化合物由来のシグナルが Co bulk のものとはピーク形 状やエネルギー位置が明らかに異なっており、Co-C₆₀化合 物に局在する Co 3d スピンの存在を示した。さらに同局在 スピンの働きによって、薄膜中を流れる電子のスピン偏極 率が増大することが巨大 TMR 効果の原因であると示唆し ている。

以上を踏まえると、Co-C₆₀ 薄膜の巨大 TMR 効果のメカ ニズムを理解するためには、特に Co-C₆₀ 化合物に関する 幾何構造・磁気構造の情報が不可欠であり、その手法としてX線吸収端構造(XANES)やXMCDが有効であると考えられる。本研究では、Co $K/L_{2,3}$ -edge XANES およびCo $L_{2,3}$ -edge XMCDの理論計算による解析からCo-C₆₀化合物の構造に関して議論を行う。

2. 実験

XAS 測定は KEK-PF の BL-7A,及び,UVSOR-IIの BL-4B にて日本原子力機構の境らによって行われた。Co $L_{2,3}$ -edgeのXANES測定では全電子収量法,Co K-edgeの XANES測定では蛍光法がそれぞれ用いられている。Co $L_{2,3}$ -edge XMCD測定は,温度6K,外部磁場0~50 kOeの 条件下で行われた。試料にはCo含有量が $x=1\sim15$ の範囲 のCo $_x$ -C $_{60}$ 薄膜を使用している。以下,Co-C $_{60}$ 化合物につ いての理論解析を議論する上で,Co $_{1,5}$ -C $_{60}$ ($L_{2,3}$ -edge)お よびCo $_{1-}$ C $_{60}$ (K-edge)の試料を低Co濃度Co-C $_{60}$ 化合物, Co $_{4,3}$ -C $_{60}$ (L $_{2,3}$ -edge)およびCo $_{4-}$ C $_{60}$ (K-edge)の試料を高 Co濃度Co-C $_{60}$ 化合物として扱っていく。

3. 理論

解析は藤川らによる相対論的多重散乱理論[10]を用い て行った。多重散乱理論では吸収原子の電子状態に依存す るほかに,周囲の原子による散乱効果を考慮することでモ デルの幾何構造についても議論することが出来る。そのた め、特定原子周囲の局所構造の推定やサイトが特定出来る 部位をもつ分子の構造の決定などに適した手法である。 X線吸収強度は完全相対論的な Dirac Green 関数 G_Dの非相 対論 Green 関数による展開を用いて次式で与えられる。

$I_{m_{n}}(\omega) = -2 \operatorname{Im} \left\langle c \left| \Delta_{m_{n}}^{*} G_{D} \Delta_{m_{n}} \right| c \right\rangle = T_{11}(\omega) + T_{12}(\omega) + T_{21}(\omega) + U_{11}(\omega) + \cdots \right\rangle$

ここでコア関数 $|c\rangle$ は始状態の内殻軌道を表し、大きい成 分 $|\varphi_c\rangle$ と小さい成分 $|\chi_c\rangle$ から構成される 4 元スピノー ルである。 $|\chi_c\rangle$ は $|\varphi_c\rangle$ / c のオーダーである。また Δ_{m_p} は電子光子相互作用演算子であり、 m_p (= ±) は X 線の左 右円偏光を表す。 T_{11} は $|\varphi_c\rangle$ から成り、相対論補正演算子 $Q = \frac{\sigma \cdot p}{2c}$ を含まないため、 L_{23} -edge XMCD では T_{11} が主要 な項であり、光電子に対する相対論効果は無視できる。す ると XMCD 強度は次式で表わされる。

$$\Delta T_{11} = -2 \operatorname{Im} \left[\left\langle \varphi_C \left| \Delta_+^* g \Delta_+ \right| \varphi_C \right\rangle - \left\langle \varphi_C \left| \Delta_-^* g \Delta_- \right| \varphi_C \right\rangle \right]$$

ここでgは一電子 Green 関数を表す。

以上の理論を用いて各 XAS 計算を行った。本研究では, XANES は左右円偏光の各強度の平均の値を採用した。ま たポテンシャル計算時に必要な電子状態は,XAFS 理論計 算ソフト FEFF8[11] による計算結果の値を参考にした。

4. 結果, 考察

4-1. 低 Co 濃度 Co-C₆₀ 化合物

Co-C₆₀ 化合物の構造に関しては幾つかの報告がされている。Avramov らは Gaussian 03[12] を用いた密度汎関数計

Figure 3 Preferable coordination of Co atom in Co-C_{60} compounds.

Figure 4 Structural models of Co-C_{60} compounds. (a) Co-2C_{60} model, (b) Co-3C_{60} model.

算によって,考えうる Co-C₆₀ 化合物のモデルのエネルギー計算を行っている [13]。その結果,Co の結合位置が C₆₀の六員環 - 六員環の結合上にある構造が安定であることが示唆されている (Fig. 3)。この結果は Javan らの第一原理計算の結果とも一致している [14]。

以上を踏まえた Co-C₆₀ 化合物として考えられるモデル (Co-2C₆₀ モデルおよび Co-3C₆₀ モデル)を Fig. 4 に示す。 これら 2 つのモデルのうち,どちらがより適した構造であ るかを理論解析と XANES スペクトル解析を比較すること で検討した。

Fig. 5 に 2 つのモデルに対する Co $L_{2,3}$ -edge XANES の計 算結果と実験結果 (Co_{1,5}-C₆₀) を示す。いずれのモデルと も計算スペクトル (実線) が実験 (破線) の形状をよく再 現しているが,特に $L_{2,3}$ -edge のメインピークに注目する と,Co-3C₆₀ モデルが Co-2C₆₀ モデルに比べてメインピー クの強度比がよく一致していることが分かる。同様に Co *K*-edge XANES の計算結果と実験結果 (Co₁-C₆₀) を Fig. 6 に示す。実験結果との比較から,明らかに Co-3C₆₀ モデ

Figure 5

Calculated and experimental Co $L_{2,3}$ -edge XANES spectra. Broken line : experimental spectra of Co_{1.5}-C₆₀. Solid line : calculated spectra for (a) Co-2C₆₀ model and (b)Co-3C₆₀ model.

Figure 6

Calculated and experimental Co *K*-edge XANES spectra. Broken line : experimental spectra of $\text{Co}_1^-\text{C}_{60}$. Solid line : calculated spectra for (a)Co- 2C_{60} model and (b)Co- 3C_{60} model.

 Table 1
 The magnetic moment of each calculated model.

原子	磁気モーメント (µ _B)			
Со	1.42 (Gaussian 03)	1.2	0.9	0.5
最近接 C	-0.07			
その他のC		0.00		

Figure 7

Calculated and experimental Co $L_{2,3}$ -edge XMCD spectra. Broken line : experimental spectra of Co_{1.5}-C₆₀. Solid line : calculated spectra for Co- $3C_{60}$ model.

ルの方が Co-2C₆₀ モデルよりもスペクトル形状をよく再現 していることが見て取れる。以上の結果から判断すると, Co-C₆₀ 化合物の構造については Co-3C₆₀ モデルが有力であ ると考えられる。

次に,得られた Co-3C₆₀ モデルの構造を用いてスピン状 態に関しての議論を行う。Gaussian 03(B3LYP/6-31G)を 用いた分子軌道計算では,スピン多重度が4(高スピン) よりも2(低スピン)の方が1.69 eV 程安定であった。そ こで Co-3C₆₀ モデルの Co 周囲の原子を抜き出した Co-3(C₂H₄) モデルを用いて検討を行った。その結果,低スピ ンの場合 majority spinの占有軌道は Co 3d 軌道と C-C 結 合の π 軌道(占有軌道)から構成されているのに対して, minority spinの占有軌道は C-C 側が π 軌道のほかに π *軌 道(非占有軌道)も混ざっていることが分かった。つまり minority spinの Co 3d-C₆₀ π *混成を通して Co から C への電 荷移動が起こり,この場合 C が Co に対して反平行の磁気 モーメントを持つことが分かった。

次に Co L_{2,3}-edge XMCD を用いて Co の磁気モーメント の大きさを見積もった。Gaussian 03 の計算結果を参考に して, Table 1 のように Co の磁気モーメントの値を変えて それぞれ計算を行った。Fig. 7 の結果から計算スペクトル と実験の比較すると, Co の磁気モーメントが 0.5-0.9 μ_B で あるときに XMCD 強度が一致することが分かる。これに より Co の磁気モーメントの値は 0.5-0.9 μ_B 程度であると 見積もることが出来る。松本らは sum rule [15-16] からス ピン磁気モーメントの磁場依存性を測定し, Brillouin 関数 を用いて飽和スピン磁気モーメントの値を 0.5 μ_B と見積も っており, 今回の計算結果とよく一致している。ここで, XMCD の計算スペクトルが XANES の計算スペクトルよ りも一致が悪い理由として,軌道磁気モーメントを考慮し ていないこと,交換ポテンシャルや *E*₀のスピン依存性の 計算精度が挙げられる。XMCD のより正確な計算スペク トルを得るには,計算方法に関してさらなる議論が必要で ある。

4-2. 高 Co 濃度 Co-C₆₀ 化合物

Co 含有量が増えていったときの構造の変化について 議論を行う。Nakajima らは質量分析法・化学プローブ法 を用いて Fig. 8 のような Co 濃度に依存して変化する Co-C₆₀ 化合物の構造を提唱している [17]。そこで Fig. 8(d) の 4Co-4C₆₀ モデルを用いて解析を行った。ここで Co 3d 軌道 と C₆₀ 分子の π 軌道が混成するため、C₆₀ 分子の向きを含 めた配置を考える必要がある。Co-C₆₀ *K*-edge EXAFS か

Figure 8

The structures of Co-C₆₀ compounds proposed by Nakajima *et al.* [17]. (a) Co-3C₆₀ model, (b) 2Co-4C₆₀ model, (c) 3Co-4C₆₀ model, (d) 4Co-4C₆₀ model.

Figure 9

Co $L_{2,3}$ -edge XANES spectra of Co_{4,3}-C₆₀. Solid line : experiment. Broken line : calculation for 4Co-4C₆₀ model.

ら見積もられた Co- 最近接 C 間距離は 2.01 Å であり [6], Co \rightarrow C への電荷移動が確認出来ること [9] から, Co-C 結 合はある程度強いと推察される。よって, 4Co-4C₆₀ モデル の各 Co 周囲の構造は低 Co 濃度のときの Co-3C₆₀ モデル と同様であるとしてモデルを作成した。つまり,全ての Co は Fig. 3 に示した C₆₀ の六員環 - 六員環の結合上に位置 する構造になっている。

Fig. 9 に 4Co-4C₆₀ モデルの Co $L_{2,3}$ -edge XANES の計算結 果と Co_{4,3}-C₆₀ の実験結果の比較を示す。実験と比較して, 概ねスペクトル形状は再現できているものの,低 Co 濃度 の場合ほど L_2 -edge のメインピークの一致は良くない。ま た, L_2 -edge の計算結果も実験と異なりメインピークが分 裂した形になった。同様に Fig. 10 に 4Co-4C₆₀ モデルによ る Co *K*-edge XANES の計算結果と Co₄-C₆₀ の実験結果の比 較を示す。*K*-edge では形状やピーク位置が実測と非常に よく一致したスペクトルを得ることが出来た。

ここで Co $L_{2,3}$ -edge XANES の結果に関する検討を行う。 境らは x の異なる Co_x-C₆₀ 薄膜について電気伝導度の温度 依存性の測定を行った [5]。その結果は、Co-C 結合の形成 によって次第に C₆₀ 分子の回転が抑制されるという過程を 示している。また、ラマン分光の測定から C₆₀ 分子だけの スペクトルに比べて、Co-C₆₀ 化合物のスペクトルでは赤外 活性モードに起因するピークが出現することやピークの 縮重の解除が見られることから C₆₀ 分子の対称性の低下が 確認されている [5]。松本らによる Co-C₆₀ C *K*-edge XANES 解析からは Co 濃度に依存してピークのシフトやブロード 化が見られることから、Co-C 結合の形成によって C₆₀ 分 子の形状が歪んでいると考えられている [9]。以上の結果 より、Co-C₆₀ 化合物の構造の歪みを考慮しなかったため、

Figure 10

Co *K*-edge XANES spectra of Co_4 - C_{60} . Solid line : experiment. Broken line : calculation for 4Co-4C₆₀ model.

 Table 2
 Scattering atoms taken into account in the Co K-edge EXAFS fitting.

	Co-C1	Co-C2	Co-C3
Co からの結合距離(Å)	2.00	2.91	3.02
配位数	6	6	6

Figure 11

Fourier-transformed Co_5-C_{60} Co K-edge EXAFS spectrum and calculated one for $4Co-4C_{60}$ model.

Figure 12 Molecular orbital energies of $4\text{Co}-4\text{C}_{60}$ model.

Co $L_{2,3}$ -edge XANES のスペクトルは、対称性の高い 4Co-4C₆₀ モデルでは一致しなかったのではないかと考える。

さらなる検討のために 4Co-4C₆₀ モデルを用いて Co₅-C₆₀ Co K-edge EXAFS の解析を行った。解析の結果, Table 2 に示す Co 周囲の C 原子 (C1, C2, C3) からの散乱を考 慮した場合に実測に近い Fitting 結果を得た (Fig. 11)。こ のとき吸収原子以外の Co による散乱は考慮していない。 つまり, Co₅-C₆₀ の系では構造の乱れによって周囲の Co 由 来のピーク成分が埋もれてしまっていると考えられる。

このように Co K-edge XANES 解析のほかに EXAFS 解 析からも 4Co-4C₆₀ モデルを用いて実測との良い一致が見 られたことから Co 周囲の局所的な構造は 4Co-4C₆₀ モデル と同様であると考えられる。

最後に 4Co-4C₆₀ モデルに関して Gaussian 03(B3LYP/6-31G)を用いた解析結果を示す。スピン多重度を変化させ て分子軌道計算を行った結果,スピン多重度が 5 のとき $(M_{spin}(\text{Co-C}_{60})=4 \mu_B)$ に最も安定であった。Co-3C₆₀ モデル ではスピン多重度が 2 $(M_{spin}(\text{Co-C}_{60})=1 \mu_B)$ のときに安定 であったことを考慮すると,これは Co-C₆₀ 化合物中の各 Co のスピン方向が揃っているモデルとなる。このときの 分子軌道エネルギーを Fig. 12 に示す。各スピンの HOMO と LUMO に 注目する と Majority spin に 比べて Minority spin の方がエネルギー差が小さいことが分かる。このこと

Figure 13 Schematic picture of TMR in Co-C₆₀ granular films.

から考えられる Co-C₆₀ 薄膜の巨大 TMR 効果の構造を Fig. 13 に示す。Coナノ粒子には Co bulk の Minority band を示 す。Coナノ粒子の Majority band は埋まっているため,主 に Minority band で電子が流れる。Co-C₆₀ 化合物の磁化の 向きが Coナノ粒子の磁化の向きと揃っていないときは, トンネル障壁の大きさは △[↑]となってどこかで障壁が大き いところを通らないといけないため、トンネル電子が流れ にくくなる。一方, Co-Co 化合物の磁化の向きが Co ナノ 粒子の磁化の向きと揃っているときは、トンネル障壁の大 きさは Δ⁺ となって Δ[↑] と比較して小さくなり, そのため多 くのトンネル伝導が生じることが出来る。ここで Julliere や Inoue らによるグラニュラー薄膜の TMR に関する理論 モデルを考える。上記で述べたように、このモデルから見 積もった Co-C₆₀ 薄膜の磁気抵抗率の値は実験値と一致し なかった。今回得られた結果と対応させて考えると、不一 致の原因は透過率 |T² に含まれるトンネル障壁の高さ Vの スピン依存性を考慮しなかったためではないかと考えられ る。そして、このことが Co-C₆₀ 薄膜の巨大 TMR 効果に関 与している可能性が挙げられる。今後は Co-C₆₀ 化合物の Minority spin に見られるバンドギャップ中のエネルギー準 位の起源について考察していくと共に、構造の歪みを考慮 した検討を行っていく必要がある。

5. まとめ

本研究では Co-C₆₀ 化合物の構造・磁気構造に関して理論的解析を行った。

まず、Co-C₆₀ 化合物の構造として考えられていた 2 つの モデル(Co-2C₆₀ および Co-3C₆₀)に対して Co $K / L_{2,3}$ -edge XANES の計算結果から Co-3C₆₀ モデルが有力であること が分かった。

次に Co-C₆₀ 化合物のスピン状態に関して議論を行った。 分子軌道計算の結果,低スピンがより安定であり,C₆₀の C 原子にスピン偏極が生じて,C の磁気モーメントは Co に対して反平行であることが分かった。また Co $L_{2,3}$ -edge XMCD から,Co の磁気モーメントは 0.5-0.9 μ_B 程度と見 積もることが出来た。

最後に Co 濃度が変化したときの Co-C₆₀ 化合物の構造に ついて議論を行った。その結果, Co 濃度に依存した Co C_{60} 化合物の構造の変化を次のように考察した。Co 濃度が 変化していったときに Co の位置は、低濃度の場合は 3 つ の C_{60} に囲まれた Co- $3C_{60}$ の位置(C_{60} 分子から成る四面体 の面の中心)に存在している。四面体の面の中心位置に結 合した Co は C_{60} と結合を形成し、Co が増えていくにつれ て C_{60} 分子の自由な回転を抑制する。さらに Co の量が増 えると構造に乱れが生じて Co- C_{60} 化合物の構造はある程 度構造のばらけた対称性の低い状態となる。

Co-C₆₀ 化合物中の Co 濃度が高い場合に妥当と考えられる 4Co-4C₆₀ の構造から分子軌道計算を行った。その結果,巨大 TMR 効果に関与すると考えられる,Minority spin に見られるバンドギャップ中のエネルギー準位の存在を示した。

引用文献

(原稿受付日:2011年3月30日)

- K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).
- [2] S. Tanabe, S. Miwa, M. Mizuguchi, T. Shinjo, Y. Suzuki, and M. Shiraishi, Appl. Phys. Lett. **91**, 063123 (2007).
- [3] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
- S. Sakai, I, Sugai, S. Mitani, K. Takahashi, Y. Matsumoto,
 H. Naramoto, P. V. Avramov, S. Okayasu, and Y. Maeda,
 Appl. Phys. Lett. 91, 242104 (2007).
- [5] S. Sakai, H. Naramoto, P. V. Avramov, T. Yaita, V. Lavrentiev, K. Narumi, Y. Baba, and Y. Maeda, Thin Solid Films 515, 7758 (2007).
- [6] S. Sakai, H. Naramoto, V. Lavrentiev, K. Narumi, M. Maekawa, A. Kawasuso, T. Yaita, and Y. Baba, Material. Transactions. 46, 765 (2005).
- [7] M. Julliere, Phys. Lett. A 54, 225 (1975).
- [8] J. Inoue, and S. Maekawa, Phys. Rev. B 53, R11927 (1996).
- [9] Y. Matsumoto, S. Sakai, Y. Takagi, T. Nakagawa, T. Yokoyama, T. Shimada, S. Mitani, H. Naramoto, and Y. Maeda, Chem. Phys. Lett. 470, 244 (2009).

- [10] T. Fujikawa, and S. Nagamatsu, J. Elect. Spect. 129, 55 (2003).
- [11] A. L. Ankudinov, B. Ravel, J. J. Rehr, and S. D. Conradson, Phys. Rev. B 58, 7565 (1998).
- [12] Gaussian03, Revision C.02, M. J. Frisch *et al.*, Gaussian Inc. Wallingford CT, 2004.
- [13] P. Avramov, H. Naramoto, A. Sakai, K. Narumi, V. Lavrentiev, and Y. Maeda, J. Phys. Chem. 111, 2299 (2007).
- [14] M. B. Javan, N. Tajabor, M. Behdani, and M. R. Rokn-Adabi, Physica B 405, 4937 (2010).
- [15] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).
- [16] P. Carra, B. T. Thole, M. Altarelli, and X. Wang, Phys. Rev. Lett. **70**, 694 (1993).
- [17] A. Nakajima, and K. Kaya, J. Phys. Chem. A 104, 176 (2000).

著者紹介

- 北條育子 Ikuko HOJO
- 千葉大学大学院融合科学研究科 修士2年
- 〒263-8522 千葉県千葉市稲毛区弥生町 1-33
- TEL: 043-290-3699
- FAX: 043-290-3699
- e-mail: hojo@graduate.chiba-u.jp
- 略歷:2011年3月千葉大学大学院融合科学研究科修士課程修了。
- 最近の研究:相対論的多重散乱理論を用いた Co-C₆₀ 薄膜の構造解析。

趣味:散歩。