家庭用燃料電池の効率向上に寄与する Pt と Ru が高エントロピー状態に分散した CO 耐性 新規合金触媒の開発

竹口竜弥,朝倉清高 北海道大学 触媒化学研究センター

CO-Tolerant High-Entropy State Pt-Ru Anode Catalyst for Reliable and Efficient Residential Fuel Cell Systems

Tatsuya TAKEGUCHI, Kiyotaka ASAKURA Catalysis Research Center, Hokkaido University

Abstract

理想的に CO を酸化する, Pt 原子と Ru 原子がランダムに分散したナノ粒子アノード触媒を, ラピッド・クエンティン グ法で調製した。CO 酸化の反応速度と電流密度の関係を精査することにより, Pt-Ru アノード触媒上での CO 酸化の反応 機構を検討した。水素酸化反応により速度論的に生じた Pt-Ru アノード触媒表面上の空きサイトの増加とともに, CO 酸 化の反応速度が増加した。CO 酸化はアノード電位に依存せず, Pt-Ru 結合上でのシフト反応が家庭用電池の効率向上に重 要であることが分かった。上記について雑誌で説明した結果を要約して報告する [1]。

1. はじめに

燃料電池システムは、カルノーサイクルの制約を受けず, 高い発電効率により,分散型の発電システムとして広範な 普及が期待されている。しかし,家庭用燃料電池では多く のプロセスを含むため,実際の発電効率は,理論発電効率 83%よりもはるかに低い。

Δ_cG/Δ_cH = 237/286 (kJ/kJ) = 1.23/1.48 (V/V)=83% Δ_cG: 水素の燃焼ギブスエネルギー Δ_cH: 水素の燃焼エンタルピー

米国エネルギー省 (DOE) の分散型発電システムの 2020 年の目標とするとする発電効率は 45% 以上である [2]。す なわち, 定格電流密度 0.2 A/cm² における, セル電圧が 0.7 V(1.48 V × 0.45)以上である必要がある。この条件のアノ ード電位は 0.2 V 以下である。家庭用燃料電池では、メタ ンを主成分とする都市ガスの改質により製造した水素を原 料に用いる。改質により得られた水素ガスには CO が含ま れるため、CO吸着によりアノード触媒は失活するので、 CO は Pt-Ru 触媒上でアノード電位 0.2 V 以下で酸化され なければならない [3-5]。市販触媒 Pt-Ru/C(CM), TEC61E54 は高い確率の Pt-Ru 結合を持ち [6],他の市販触媒 (e.g., Pt-Ru/C(LP) Pt:Ru = 1:1) よりもはるかに高い性能を示すので, 実用触媒として広く使われている。Pt-Ru 結合の多い触媒 が CO 酸化に理想的であるが, Pt-Ru 系では同じ元素どう しの結合が有利で [7,8],それぞれの元素は異なった安定 構造を示すので [8-10], Pt-Ru 結合の多い触媒を作ること

は困難である。エンタルピーは低温での変化のドライビン グ・フォースで、エントロピーは高温での変化のトライビ ングフォースである (G = H-TS)。ラピッド・クエンティン グ法で調製することにより、高エントロピー状態の Pt と Ru分散(ランダム分散)が、低温でも保持された。我々は、 Pt-Ru/C(CM)よりも高い CO 耐性を持つランダムに混ざり 合った Pt-Ru/C [Pt-Ru/C(RM)] 調製に成功した [11]。この Pt-Ruナノ粒子触媒の高い CO 耐性により、家庭用 PEFC システムの CO 選択酸化ユニットを省くことが可能とな り、システムのコストを削減できる。CO酸化の反応機構 は、電気化学な二元機能機構で説明されてきた [3, 4]。こ れは電気化学の最も有名な機構の一つであるが、アノード 電位 0.35 V 以下では、CO は電気化学的には酸化されない [12]。実際の燃料電池の作動条件でのアノード電位は 0.2 V以下であり、0.35 Vよりも低い[13]。したがって、われ われは、この機構の妥当性について検討した。

本研究では、燃料電池の作動条件で CO 酸化の機構を検 討した。電気化学的 CO 酸化反応と触媒的 CO 酸化反応(シ フト反応)とを区別するために, CO 酸化の反応速度の電 流および電圧依存性を検討した。さらに、触媒構造の広域 X線吸収微細構造 (EXAFS) 測定を行った結果を、アノー ド触媒の活性と関連付けて議論した。

2. 実験

Pt-Ru/C(RM) 触媒は, Pt:Ru = 2:3 のものを調製した。ま ず, 40 wt % Pt/C, RuCl₃·nH₂O, メタノール, 蒸留水を沸点温 度で撹拌・混合した。Ru はメタノールで還元され Pt/C に 吸着する。12時間撹拌した後、熱水で洗浄し、80℃で一 夜間乾燥した。次に,得られた触媒を,H₂/Ar (5% H₂)中 に 900℃で 10 min 以内で急速昇温することで還元処理し た。900℃に達するとすぐに炉を止めて急冷した。900℃ から 500°C まで 18 min で冷却し, 500°C から室温まで 50 min で冷却した。膜電極複合体 (MEA) 作成には、カーボ ンペーパーを、ガス拡散層に用いた。アノード触媒(市販 の Pt-Ru/C(CM) (Pt:Ru = 2:3), 開発した Pt-Ru/C(RM) (Pt:Ru = 2:3, 市販の Pt-Ru/C(LP) Pt:Ru = 1:1, Pt/MoO_x/C[14]) とナ フィオン溶液を超音波で水中に懸濁させた触媒インクをカ ーボンペーパーに塗布した。アノードの Pt-Ru 担持量は, 0.5 mg cm⁻² とした。カソードの触媒層も,市販の Pt/C 触 媒 (40 wt % Pt) を用いて同じ処方で調製し, Pt 担持量は 0.5 mg cm⁻² とした。最後に、アノード触媒層とカソード 触媒層 (22 × 22 mm) を, ナフィオン膜 (NRE-212, Aldrich) の両サイドに設置して 135 °C で 4 MPa, 10 min ホットプ レスして MEA を作った。流路構造を持つ炭素とヒータ付 銅版からなる単セル (FC05-01SP, ElectroChem, Inc.) に MEA を組み込んだ。単セルを燃料電池評価装置 (Chino Corp.) に接続した。純H₂(あるいはH₂/CO混合ガス)とO₂を, 大気圧, 流速 80 mL min⁻¹で, アノードとカソードに, そ れぞれ供給した。測定中はセル温度 75 ℃ で, アノードと カソードを,75℃と70℃で加湿した。アノードからの 生成ガスの CO, 濃度は online マイクロガスロマトグラフ Varian CP 4900 で分析した。触媒構造の解析は EXAFS 測 定で行った。IMSS-KEK の Photon Factory のビームライン BL-7CとNW-10Aを用いて、Pt LIIIとRu K-edges X線吸 収分光スペクトルを得た(課題番号: 2009U002)。EXAFS 解析の詳細は文献 [15] を参照した。

3. 結果と考察

実際の触媒表面での反応の正確な分析は難しいので単純 化した。アノードガス中のH₂分圧は,H₂OやCO分圧よ りも高いので,低濃度COを含む加湿したH₂をアノード に用いたときの開回路条件(発電を伴わない)では,最初 にH₂がPt-Ru合金の空きサイトに吸着する[3,4]。

$$1/2H_2 + S(Pt-Ru) \rightleftharpoons H-S(Pt-Ru)$$
(1)

S(Pt-Ru) は Pt-Ru 合金表面の空サイトで,H-S(Pt-Ru) は S(Pt-Ru) に吸着したHである。触媒化学反応(2)で,H₂O が Pt-Ru 合金上に解離吸着,あるいは電気化学反応(3)が 進行すると,熱力学的安定性から OH は選択的に Ru 表面 に吸着する[4]。

$H_2O + 2 S(Pt-Ru) \rightleftharpoons H-S(Pt-Ru) + OH-S(Ru)$	(2)
$H_2O + S(Pt-Ru) \rightleftharpoons OH-S(Ru) + H^+ + e^-$	(3)

OH-S(Ru) は Ru に選択的に吸着した OH である。アノード 電位 0.35 V 以下では電気化学反応 (3) では OH-S(Ru) が生 成しないが [4],熱力学的に有利なシフト反応の要素反応 (2) が進行すると、反応中間体として OH-S(Ru) が生成する。
 CO 分圧は、H₂ と H₂O 分圧よりも低いので、吸着分子の
 熱力学的安定性より、吸着水素は徐々に CO に置換される
 [16]。

$$CO + H-S(Pt-Ru) \rightarrow CO-S(Pt-Ru) + 1/2H_2$$
(4)

CO-S(Pt-Ru) は, Pt-Ru 合金表面に吸着した CO である。電 気化学反応が起こらない開回路条件では,以下のシフト反 応(5)が反応(6)経由で進行し[17],空サイト S(Pt-Ru)が 生成する。

$\rm CO + H_2O \rightarrow H_2 + CO_2$	(5)
CO-S(Pt- Ru) + OH-S(Ru)	
\rightarrow CO ₂ + 1/2H ₂ + 2S(Pt-Ru)	(6)

前向きの反応 (1) が熱力学的に有利なので,空サイトの数 [S(Pt-Ru)] は,時間の経過とともに減少する。やがて反応 (2) は停止して, OH-S(Ru) は時間の経過とともになくなり, OH 被覆率 θ_{OH}(Ru) は 0 になり,シフト反応は停止する。 しかし発電時(閉回路)では,水素酸化反応 (HOR) (7) に より空サイト S(Pt-Ru) が生成する。

$$H-S(Pt-Ru) \rightarrow S(Pt-Ru) + H^{+} + e^{-}$$
(7)

空サイト S(Pt-Ru)の数は電流に比例する(関係式(8))。

$$\theta_{\rm emp}({\rm Pt-Ru}) \propto I$$
 (8)

 $\theta_{emp}(Pt-Ru) は速度論的に生成した Pt-Ru 合金上の空サイト,$ I は反応式 (7) による電流密度である。上記の通り,*I=*0 の $とき,定常条件で<math>\theta_{emp}(Pt-Ru) \ge \theta_{OH}(Ru) \ge 0$ である。それ ゆえ, $\theta_{emp}(Pt-Ru) \ge I$ に比例する(関係式 (8))。一方, Ru に吸着した OH は,反応式 (2) により生成するが,それ には 2 つの空サイト S(Pt-Ru) が必要である。したがって, OH 被覆率 [$\theta_{OH}(Ru$]] $\bowtie I^2$ に比例する。

$$\theta_{\rm OH}({\rm Ru}) \propto \theta_{\rm emp}({\rm Pt-Ru})^2 \propto I^2$$
 (9)

もし, 電気化学な二元機能を仮定する場合, 吸着 CO は,

$$CO-S(Pt-Ru) + OH-S(Ru)$$

$$\rightarrow CO_2 + H^+ + e^- + 2S(Pt-Ru)$$
(10)

で、継続的に反応式 (10) によって除去され P_{co} は低い。このように、CO 被覆率 $\theta_{co}(Pt-Ru)$ が小さく、CO はどのサイトにも吸着できる [3,4] ので、平衡時の $\theta_{co}(Pt-Ru)$ は定電流条件で P_{co} (CO 分圧) に比例する。

$$\theta_{\rm co}({\rm Pt-Ru}) \propto P_{\rm CO}$$
 (11)

Figure 1 Dependence of CO₂ formation rate on anode potential. Logarithms of conversion rate (rCO2/PCO) divided by I² are plotted against anode potential. PtRu/C(RM) at a cell voltage of 0.7 V, (diamonds, ◆) and PtRu/C(CM) at a cell voltage over 0.46 V, (triangles, ▲).[1]

Figure 2 CO stripping at 60 °C. CO was (1) fed for 20 min at 0.05 V in 0.1 M HClO₄; (2) purged for 30 min; and (3) sweeped at 60 °C between 0.05 and 0.8 V at 10 mV/s.[1]

CO 酸化の反応速度 (r_{CO2}) は θ_{co} (Pt-Ru) θ_{OH} (Ru) exp(aE) に比 例する (関係式 12a, 12b)。ここで a は定数で E はアノード 電位である。

 $r_{\text{CO2}} \propto \theta_{\text{co}}(\text{Pt-Ru}) \theta_{\text{OH}}(\text{Ru}) \exp(aE) \propto P_{\text{CO}} I^2 \exp(aE)$ (12a) Log $(r_{\text{CO2}} / P_{\text{CO}} I^2) = aE + \text{const}$

$$(a = F/RT, F: Faraday constant)$$
 (12b)

生成速度をPで割ったものの対数を,アノード電位に対 してプロットした。Log (r_{CO2}/P_{CO} ,P) はアノード電位 E に 依存しなかった。Fig. 1 で示した通り関係式(12b)とは一 致しなかった。作動条件では電気化学的 CO 酸化反応は観 測されなかった。これは,Maillaerd らが Pt-Ru 上での CO 電気酸化の開始電位は 0.35 V と報告していることと一致 する [12]。Fig. 2 に,60°C での Pt-Ru/(CM)と Pt-Ru/C(RM) の CO ストリッピングボルタムグラフの結果を示す。Pt-Ru/(CM)と Pt-Ru/C(RM)の電気化学的 CO 酸化反応の活性 は,通常の活性の Pt-Ru 触媒とほぼ同等であった。電気化 学的 CO 酸化反応の電位範囲は (>0.35 V in Fig. 2)実際の 反応条件でのアノードの電位よりも高く,異なった反応の 機構が考えられる。電流密度 0.2 A/cm² におけるセル電圧 の CO 濃度依存性を Fig. 3 に示す。触媒により CO 耐性は 異なる。Pt-Ru/C(RM) を用いた 500 ppm CO 共存の条件で は、セル電圧は 0.7 V 以上(アノード電位 0.14 V)である。 Fig. 2 と 3 を比較すると、CO 耐性は電気化学的 CO 酸化反応 とは無関係である。

そこで、シフト反応の CO 耐性への影響を評価する。水 の解離吸着の低い活性と強い CO への結合力のため、Pt 触 媒上でシフト反応には 200°C 以上の高い温度を必要とする [18]。しかし、Pt-Ru/C を用いたとき、水素還元反応 (7) に より空サイトを生ずる。OH は Ru 上に吸着するため [19, 20]、シフト反応は水の解離反応を経由して進行する [21-27]。触媒化学のシフト反応(6)の場合,関係式 12a と 12b は、 13a と 13b に置き換えられる。

$$r_{\rm CO2} \propto P_{\rm CO} I^2$$
 (13a)
 $(r_{\rm CO2} / P_{\rm CO}) 1/2 \propto I$ (13b)

Fig. 4に,反応速度の平方根 (r_{co2} /P_{co})¹² を I に対してプロ ットした結果を示す。I に対して直線的に増加した,シフ ト反応が進行していることが分かった。シフト反応の反 応速度は,水素酸化反応 (7) により速度論的に生じた空き サイトにより加速される。Pt と Ru がよく混合されれば, OH-S(Ru) は, Ru に吸着した CO よりは,むしろ Pt に吸 着した CO と反応する。Pt-Ru 結合上でのシフト反応が支 配的であり,これが CO 耐性に貢献する。一方,Pt と Ru がよく混ざっていないとき,OH-S(Ru) は,Pt に吸着した CO よりもむしろ Ru に吸着した CO と反応し,Ru 上での シフト反応が支配的になり,CO 耐性への貢献は少ない。 水素酸化反応は主に Pt 上で起こるので,Pt に吸着した CO を除去して高い CO 耐性を得る必要がある。

一方 Pt/MoO_x/C では、MoOx 上でのシフト反応が支配的 で、CO 耐性への寄与が小さいので、これを合金化度の低 いモデルとして考察した。種々の酸化物上でシフト反応が おこることが知られている。もっとも、受けいれられてい

Figure 3 Effect of CO concentration on cell voltage at 0.2 A/cm². Cell temp.: 70 °C; electrolyte: nafion NRE 212; cathode: Pt/C (0.5 mg/cm2); O₂ humidified at 70 °C; flow rate: 80 mL/min; anode: Pt₂Ru₃/C (0.5 mg PtRu/cm²); H₂ containing 0–2000 ppm CO humidified at 70°C; and flow rate: 80 mL/min.[1]

Figure 4 Dependence of conversion rate on I. Pt-Ru/C(RM) at a cell voltage of 0.7 V (diamonds, ◆), PtRu/C(CM) over 0.46 V (triangles, ▲) and Pt/MoOx/C over 0.114 V (circles, ●) [1]

る機構では,水の解離吸着よって生じた OH は CO と反応 する [21-27]。この機構は Pt/MoO_{*}/C の場合,式 (1-4, 6) と 同じように,下記のようにあらわされる。

$1/2H_2 + S(Pt-Mo) \rightleftharpoons H-S(Pt-Mo)$	(14)
$\mathrm{H_{2}O}+2S(\text{Pt-Mo}) \rightleftarrows \mathrm{OH-S(Mo)}+\mathrm{H-S(\text{Pt-Mo})}$	(15)
$\text{CO} + \text{S}(\text{Pt-Mo}) \rightleftharpoons \text{CO-S}(\text{Pt-Mo})$	(16)
$\text{CO-S(Pt-Mo)} + \text{OH-S(Mo)} \rightarrow \text{CO}_2 + 2\text{S(Pt-Mo)} + 1/2\text{H}_2$	(17)

S(Pt-Mo) は Pt/MoOx 上の表面サイト, OH-S(Mo) は MoOx に 選択的に吸着した OH で, CO-S(Pt-Mo) は Pt/MoOx に 吸着した CO である。電流が流れなくても, 多くの OH が MoOx 上に存在するので, シフト反応 (17) が進行し, 電流 が流れなくて空サイト [S(Pt-Mo)] を生成する。水素還元反 応 (18) の増加に伴い電流が増加にすると, 空サイトは増 加する。

 $H-S(Pt -Mo)MoO_{x} \rightleftharpoons H+ e^{-}$ (18) $\theta_{emp}(Pt-Mo) = b(1 + k_{I}I) (b \text{ and } k_{I} \text{ are constants})$ (19)

 θ_{emp} (Pt-Mo) は速度論的に生じた Pt/MoOx. 上の空きサイト の割合である。上記の通り, θ_{emp} (Pt-Mo) は電流がなくても 切片 b をもつ。CO 酸化の反応速度は (r_{co2}) 下記のようで ある。

 $r_{\text{CO2}} \propto P_{\text{CO}} \theta_{\text{co}} (\text{Mo})$ $\propto P_{\text{CO}} \theta_{\text{emp}} (\text{Pt-Mo})^2$ $\propto P_{\text{CO}} b (1 + k_I I))^2 \qquad (20a)$ $(r_{\text{CO2}} / P_{\text{CO}})^{1/2} \propto \theta (\text{Pt-Mo}) \propto b(1 + k_I I) \qquad (20b)$

Fig. 4のように Pt/MoOx/C では,転化率の平方根は式 (20b)で表され,シフト反応が起こっていることが推測 される。Pt/MoOx/C の CO 耐性は,Pt-Ru/C(RM)よりも かなり低い。(500 ppm CO で 0.2 Acm⁻²のセル電圧は, Pt/ MoOx/C を用いると 0 V, Pt-Ru/C(RM)を用いると 0.72 V, Pt-Ru/C(CM)を用いると 0.58 V である。) Pt/MoOx/C の CO 耐性に対するシフト反応の寄与は小さい。MoOx に吸 着した CO は、Pt に吸着した CO よりも効果的に酸化され た。低い合金化度の Pt-Ru 触媒は同じような傾向を示す。 Pt に吸着した CO よりも、Ru に吸着した CO が、効果的 にシフト反応により酸化される。したがって、CO 耐性は 低い (500 ppm CO で 0.2 A cm⁻² のセル電圧 0 V)。

速度の詳しい解析により, CO₂はシフト反応により生成 することが分かった。Pt-Ru 結合は Pt に吸着した CO の除 去に有効で、高い CO 耐性には重要である。電気化学的 CO 酸化反応は,実際の条件では寄与しない。Ru 上での シフト反応は CO 耐性には直接は寄与しないので, Pt-Ru 系の性能を決める最も重要なファクターは, Pt-Ru 結合の 存在確率である。

Pt は fcc 構造をとり, Ru は hcp 構造をとる [8-10] ので, 異なった原子間の結合 (Pt-Ru) よりも,おなじ元素間の 結合(Pt-PtとRu-Ru)が有利である [6,7]。実際, Pt-Ru/ C(CM) では、EXAFS から求めた隣接原子の原子比 N_{Pt-Ru}/ $(N_{Pt-Ru} + N_{Pt-Pt}) = 0.44, N_{Ru-Pt}/(N_{Ru-Pt} + N_{Ru-Ru}) = 0.32 \text{ cb}, \text{ } \text{b}$ ダムに分散したときに予測される結果と異なる。(ここで、 N_{Pt-Ru} (N_{Ru-Pt})は、Pt(Ru)からのRu(Pt)への配位数で、N_{Pt-Pt} (N_{Ru-Ru})は, Pt (Ru)からの Pt (Ru)への配位数である。)一方, Pt-Ru/C(RM) \mathcal{C} lt, $N_{Pt-Ru}/(N_{Pt-Ru} + N_{Pt-Pt}) = 0.59 \mathcal{C} M_{Ru}/(M_{Pt} + N_{Pt-Pt})$ M_{Ru}) =0.60 とほぼ一致し, N_{Ru-Pt}/(N_{Ru-Pt} + N_{Ru-Ru})=0.37 も M_{Pt}/ $(M_{Ru} + M_{Pt}) = 0.40$ でほぼ一致する(ここで、 M_{Pt} は Pt の、 M_{Ru}は Ruのモル比である。)このことは、Pt 原子と Ru 原 子が高温で溶解し完全にランダムに分散し、その後急冷す ることで、ランダム分散が保持されたと考えられる。これ は、Pt-Ru 合金系において高エンタルピー状態で原子がラ ンダムに分散した初めての例である。Pt-Ru/C(RM)では, より多くの Pt-Ru 結合を持つので、Pt-Ru/C(RM)の CO 耐 性は Pt-Ru/C(CM) よりも高かった。

4. まとめ

PEFCのPt-Ru/Cアノード触媒上でのCO酸化の速度は 電流密度の2乗に比例して、アノード電位に依存しない。 PEFC作動状態でのアノード触媒のCO耐性は電気化学的 CO酸化反応とは無関係である。ランダムに原子が分散し たPt-Ru触媒では、シフト反応によりCOが除去される。 この触媒は、家庭用燃料電池の効率の向上に貢献する。こ の結果はCO耐性の機構の解明だけでなく、高活性なアノ ード触媒、被毒に強い触媒の開発に応用可能である。

引用文献

- T. Takeguchi, T. Yamanaka, K. Asakura, E. N. Muhamad, K. Uosaki, and W. Ueda, J. Am. Chem. Soc., **134**, 14508 (2012).
- [2] 2010 DOE Hydrogen and Fuel Cells Program Plan Draft; Department of Energy: Washington, DC, 2010; 9.

- [3] M. Watanabe and S. Motoo, J. Electroanal. Chem. Interfacial Electrochem. 60, 267 (1975).
- [4] M. Watanabe and S. Motoo, J. Electroanal. Chem. Interfacial Electrochem. 60, 275 (1975).
- [5] C. Roth, N. Benker, T. Buhrmester, M. Mazurek, M. Loster, H. Fuess, D. C. Koningsberger, and D. E. Ramaker, J. Am. Chem. Soc. **127**, 14607 (2005).
- [6] T. A. Yamamoto, S. Kageyama, S. Seino, H. Nitani, T. Nakagawa, R. Horioka, Y. Honda, K. Ueno, and D. Daimon. Appl. Catal., A, **396**, 68 (2011).
- [7] H. Nitani, T. Nakagawa, D. Daimon, Y. Kurobe, T. Ono, Y. Honda, A. Koizumi, S. Seino, and T. A. Yamamoto, Appl. Catal., A, **326**, 194 (2007).
- [8] E. Antolini, Mater. Chem. Phys., 78, 563 (2003).
- [9] E. Antolini, L. Giorgi, F. Cardellini, and E. Passalacqua, J. Solid State Electrochem. 131 (2001).
- [10] K. Okamoto, J. Phase Equilib. Diffus. 29, 471 (2008).
- [11] T. Yamanaka, T. Takeguchi, G.X. Wang, E. N. Muhamad, and W. Ueda, W. J. Power Source, **195**, 6398 (2010).
- [12] M. Maillard, G.-Q. Lu, A. Wieckowski, and U. Stimming, J. Phys. Chem. B, **109**, 16230 (2005).
- [13] H. A. Gasteiger, N. M. Markovic, P. N. Ross Jr. J. Phys. Chem, 99, 8290 (1995).
- [14] E. N. Muhamad, T. Takeguchi, F. Wang, G. X. Wang, T. Yamanaka, and W. Ueda, J. Electrochem. Soc., 156, B1361 (2009).
- [15] C.-R. Bian, S. Suzuki, K. Asakura, L. Ping, and N. Toshima, J. Phys. Chem., **106**, 8587 (2002).
- [16] J. M. Feliu, J. M. Orts, A. Fernandez-Vega, A. Aldaz, and J. Clavilier, J. Electroanal. Chem., 296, 191 (1990).
- [17] L. C. Grabow, A. A. Gokhale, S. T. Evans, J. A. Dumesic, and M. Mavrikakis, Phys. Chem. C, **112**, 4608 (2008).
- [18] D. W. Flaherty, W. Y. Yu, Z. D. Pozun, G. Henkelman, C.
 B. Mullins, J. Catal., 282, 278 (2011).
- [19] P. K. Leavitt, J. L. Davis, J. S. Dyer, and P. A. Thiel, Surf. Sci. 346 (1989).
- [20] C. Clay, S. Haq, and A. Hodgson, Chem. Phys. Lett., 388, 89 (2004).
- [21] C. T. Campbell and K. A. Daube, J. Catal. 104, 109 (1987).
- [22] D. Andreeva, V. Idakiev, T. Tabakova, A. Andreev, and R. Giovanoli, Appl. Catal., A, 134, 275 (1996).
- [23] Y. Saito, K. Terada, S. Hasegwa, T. Miyao, and S. Naito, Appl. Catal., A, 296, 80 (2005).
- [24] K.G. Azzam, I. V. Babich, K. Seshan, and L. Leffers, J. Catal., 296, 153 (2007).
- [25] J. M. Rostam, D. Braden, S. Kandoi, P. Nagel, M. Mavrkakis, J. A. Dumesic, J. Catal., 296, 153 (2007).
- [26] T. Shido and Y. Iwasawa, J. Catal., 141, 71 (1993).
- [27] T. Shido and Y. Iwasawa, J. Catal., **136**, 493 (1993). (原稿受付日:2013年3月29日)

著者紹介

竹口竜弥 Tatsuya TAKEGUCHI

北海道大学 准教授 〒001-0021 札幌市北区北21条西10丁目 TEL:011-706-9142,9165 e-mail:takeguch@cat.hokudai.ac.jp 略歴:1990年京都大学大学院工学研 究科博士後期課程中退学,京都大学工

学部助手,2003年北海道大学触媒化学研究センター助教授2007年同准教授。博士(工学)。 最近の研究:燃料電池用アノード触媒の開発

趣味:趣味は特にないですが7人の子供を育てています(証 拠写真添付)。

朝倉清高 Kiyotaka ASAKURA

北海道大学 教授
〒 001-0021
札幌市北区北 21 条西 10 丁目
TEL: 011-706-9113
e-mail: askr@cat.hokudai.ac.jp
略歴: 1984 年東京大学助手
1987 年 PhD, 1992 FHI-MPG in Berlin

に留学,1994年東京大学スペクトル化学助教授,1999北 海道大学触媒化学研究センター教授。 最近の研究:燃料電池触媒表面のXAFSによる解析。