自己参照型格子比較器を用いた同位体濃縮²⁸Si 単結晶の結晶評価

早稲田篤¹,藤本弘之¹,張小威² ¹産業技術総合研究所計量標準総合センター,²中国科学院高能物理研究所

Crystal Characterization of ²⁸Si Single Crystals by the Self-Referenced Lattice Comparator

Atsushi WASEDA¹, Hiroyuki FUJIMOTO¹, Xiaowei ZHANG² ¹National Institute of Advanced Science and Technology, National Metrology Institute of Japan ²Chinese Academy of Science, Institute of High Energy Physics

Abstract

X線結晶密度法を用いたアボガドロ定数の決定では、使用される単結晶シリコンの結晶評価が必須となる。質量単位キログラムの定義改定を目指し行われた、同位体濃縮²⁸Si単結晶を用いたアボガドロ定数の決定において、自己参照型格子比較器を用いて行った単結晶シリコンの格子定数の一様性評価と結晶間格子定数比較の結果について報告する。

1. はじめに

2018年11月にパリ郊外で開かれた度量衡総会で,国際 単位系(SI)の7つの基本単位の中の4つの基本単位,質 量と温度,電流,物質量の定義の改定が承認された。SI 基本単位の中でこれまで唯一人工物である国際キログラ ム原器で定義されていた質量単位のキログラムは,基礎物 理定数の一つであるプランク定数によって再定義される こととなった。この質量の単位キログラムの定義改定に向 けては,これまで電磁気量子技術を利用したキッブルバラ ンス(ワットバランス)法によるプランク定数hの測定 と,単結晶シリコンを用いたX線結晶密度(X-ray crystal density, XRCD)法によるアボガドロ定数 N_Aの測定[1-2] の二つのアプローチが進められてきた。一方,アボガドロ 定数とプランク定数の間には厳密な以下の物理的関係式 (1)が成立する。

$$N_{\rm A} = \frac{M_{\rm e}}{m_{\rm e}} = \frac{cM_{\rm e}\alpha^2}{2R_{\infty}} \cdot \frac{1}{h} \tag{1}$$

ここで, M_{en} , m_{en} , c, α , R_{∞} はそれぞれ電子のモル質量, 電子の質量,光の速さ,微細構造定数,リュードベリ定数 である。ここで N_A と h の変換にかかる係数は相対標準不 確かさ 4.5×10^{-10} と非常に精度よく分かっていることから, キッブルバランス法と XRCD 法はそれぞれ独立なプラン ク定数及びアボガドロ定数の測定法である。科学技術デ ータ委員会(Committee on Data for Science and Technology, CODATA)の基礎定数作業部会は 2017 年 7 月 1 日までに 受理された論文のデータを評価し,SI 基本単位の新しい 定義に用いられるプランク定数,電気素量,ボルツマン 定数,アボガドロ定数の特別調整を行った [3]。この調整 値を元に,SI ではプランク定数を定義値(h = 6.626 070 15×10⁻³⁴ J s)とし, 質量単位キログラムが再定義される こととなった。新しい定義は 2019 年 5 月 20 日の世界計量 記念日から施行され,キログラムの定義が 130 年ぶりに改 定されることとなった。

産総研はこれまで単結晶シリコンを用いたアボガドロ 定数の決定に関する研究を続けており、2004年から2010 年と、続く2011年から2017年にかけては、7つの研究 機関が研究覚書(MoU)を結び、同位体濃縮²⁸Si単結晶 (AVO28)の密度、格子定数、モル質量からXRCD法によ りアボガドロ定数を決定するアボガドロ国際プロジェク ト(International Avogadro Coordination Project, IAC Project) に参加し研究を推進してきた[4-5]。また、ドイツ物理工 学研究所(PTB)が新たに作製した同位体濃縮²⁸Si単結晶 (Si28-23Pr11)についても、IAC は協力して研究を行い、 アボガドロ定数を決定した[6]。これらのデータは SI 基本 単位の新しい定義に用いられる CODATA の2017年の特別 調整に用いられている。

単結晶シリコンを用いた XRCD 法によるアボガドロ定数の決定では以下の関係式 (2) によりアボガドロ定数を決定する。

$$N_{\rm A} = \frac{8M_{\rm Si}}{\rho a^3} \tag{2}$$

ここで、*M*_{si}, *ρ*, *a* はそれぞれ単結晶シリコンのモル質量, 密度,格子定数である。XRCD 法では単結晶シリコンのモ ル質量,密度,格子定数の絶対測定を行うとともに、用い る単結晶シリコンの結晶一様性や完全性,欠陥評価を行う ことが必須である。格子定数に関しては,X線干渉計と光 波干渉計を組み合わせた絶対測定 [7-8] が行われると共に, 自己参照型格子比較器(Self-Referenced Lattice Comparator, SRLC) [9-10] を用いた格子定数の一様性評価 [11-12] が行 われた。また, SRLC を用いて格子定数の絶対測定が行わ れた AVO28 結晶と,新しい Si28-23Pr11 結晶の格子定数 の結晶間比較測定を行うことにより,新しい結晶の格子定 数を決定した。本稿では,高エネルギー加速器研究機構の 放射光施設(KEK-PF)の SRLC を用いて行われた,アボ ガドロ定数決定に関する研究について紹介する。

2. 自己参照型格子比較器

自己参照型格子比較器(SRLC)の装置の概略図を Fig.1 に示す。本装置は高エネルギー加速器研究機構放射光施設 内のビームライン BL-3C に設置されている。放射光光源 から入射されたX線は,先ず Si(111) モノクロメーターで 単色化され,次に一体型ダブルチャンネルカットモノク ロメーター(Monolithic Double Channel-cut Monochromator, MDCM)により精密に単色化され試料に照射される。 SRLC では、この入射X線に対してほぼ同時に回折する, 結晶学的に対称性が等価な二つの回折ピークを用いるた め,僅かな回転角の範囲で二つの回折ピークを観測するこ とが可能である(Fig. 2)。2 つの回折ピークの回転角の差 がγであるとき,MDCM 結晶と試料の格子定数の相対差 は以下の関係式(3) により求めることができる。

$$\frac{\Delta d}{d} = \frac{d_{\text{sample}} - d_{\text{MDCM}}}{d_{\text{MDCM}}} = \cot \theta_{\text{B}} \cdot \frac{\gamma}{2}$$
(3)

ここで、 $\theta_{\rm B}$ は回折のブラッグ角である。本実験では、 (100) 方位と (110) 方位の単結晶シリコンを用いて測定を 行った。高分解能を得るために、回折角がなるべく大きく、 回折ピーク幅がなるべく狭く、色分散のない光学系配置 が選ばれている。(100) 結晶については、結晶指数 (10 0 2) と (10 2 0) を用いており、このときX線波長とブラッグ角 はそれぞれ、0.1055 nm と 82.03° である。(110) 結晶につ いては指数 (771) と (771) を用いており、この時のX線波 長とブラッグ角はそれぞれ、0.1086 nm と 84.23° である。

格子定数の精密比較測定では,温度の時間揺らぎや空間 不均一性がそのまま結晶の格子間隔測定値の揺らぎや不均 一に直結するため,装置は精密に温度制御されている。恒

Figure 1 Schematic side view of the SRLC.

Figure 2 X-ray diffraction peaks of 10 2 0 and 10 0 2 from a silicon crystal. γ is an interval angle of two diffractions.

温槽により水温を制御された水を MDCM ホルダーと試料 ホルダーに直列に流し,温度を均一に保っており,ITS-90 で校正された白金抵抗測温体を試料及び MDCM ホルダー に設置し測温ブリッジで測定し,温度補正を行っている。 試料と MDCM の温度差は 10 mK 以下となっており,試料 の左右の温度差は 1 mK 以下となっている。また,試料と MDCM の数時間での温度安定度は 1 mK 以下であり,長 時間の温度安定度は 5 mK 程度となっている。

SRLC ではブラッグ配置を用いており,X線消衰長は約20 µm であるので,試料表面数十µm 深さまでの平均化した格子定数変化を測定することができる。一方,ラウエ配置を用いた二結晶格子比較器やX線干渉計では,X線は試料内部を透過するので,試料内部の平均化された格子定数の変化を測定することになる。さらに,SRLC ではブラッグ配置による表面反射X線を用いることから,厚さのある結晶でも結晶による減衰の影響を考える必要はなく測定可能であり,測定形状は比較的自由である。また,SRLC では試料表面と平行に近い結晶面間隔を測定するが,二結晶格子比較器やX線干渉計では,試料面内方向の格子定数を測定する。

3. 同位体濃縮²⁸Si 単結晶の結晶評価

IAC Project では、遠心分離法による同位体濃縮を行い、 同位体濃縮度 99.99 %、質量 5 kg の同位体濃縮 ²⁸Si 単結晶 (AVO28)を浮遊帯法により作製した。インゴットからは 質量 1 kg,直径約 94 mm の球体 2 個を始め、X線干渉計 用の結晶、格子定数の一様性評価などのための結晶評価用 試料が切り出され測定が行われアボガドロ定数を決定し た。また、これとは別に PTB が作製した同位体濃縮 ²⁸Si 単結晶(Si28-23Pr11)についても、IAC 参加各国も協力し て同様の測定が行われアボガドロ定数を決定した。これら 単結晶シリコンの格子定数一様性について、産総研では KEK-PF の協力を得て SRLC を用いて結晶評価を行なった。 また、Si28-23Pr11 結晶については、格子定数一様性評価 に加え、格子定数の絶対測定が行われた AVO28 と SRLC による結晶間格子比較を行うことにより、格子定数の決定 も行なった。

3-1. AVO28 結晶

IAC Project で作製した AVO28 結晶については、種結晶 側 4.12, 格子定数の絶対測定が行われた XINT 結晶, 多結 晶側 9.R1, 10.5 について, SRLC を用いて格子定数の一様 性評価を行なった。Fig.3に格子定数の分布測定結果を示 す。また、Table.1に各結晶の格子定数分布と欠陥評価の 結果を示す。種結晶側から切り出された(100)結晶4.12は, インゴット成長方向に垂直な断面であり、格子定数分布に 不均一は見られず一様であった。不純物原子である炭素や 酸素が非常に少ない試料であり、試料の格子定数分布の相 対標準偏差は 4.8 × 10⁻⁹ となっていた。また,格子定数の 絶対測定が行われた XINT 結晶についても格子定数の分布 評価を行なった。XINT は (110) 結晶でインゴット成長方 向に垂直な縦断面である。若干下に凸に湾曲した層状パタ ーンが見られるが,格子定数の分布は 5.5 × 10⁻⁹ となって おり,一様性も良く格子定数の絶対測定を行うのに適した 試料であった。

一方, AVO28 インゴットの多結晶側は不純物原子で

ある炭素と酸素濃度も比較的多い結晶である。9.R1 は (100) 結晶で、横断面は渦状パターンが見えている。また、 (110) 結晶である 10.5 は縦断面試料であり、下に凸に湾曲 した層状のパターンが観測できる。9.R1 で格子定数の分 布は 1.7 × 10⁻⁸、10.5 では 1.2 × 10⁻⁸ となっており、4.12 や XINT と比べ一桁格子定数分布が大きくなっている。結晶 化時に不純物の偏析が起きている可能性もある。現在この 点についてはさらに確認の実験を進めている。

3-2. Si28-23Pr11 結晶

PTB により新たに作製されたインゴット Si28-23Pr11 の種結晶側から切り出された (100) 結晶 M.2 について, SRLC による格子定数の一様性評価を行った。この時の定 点での繰り返し測定時の標準偏差は 3.8 × 10⁻⁹ であった。 新結晶試料 M.2 と格子定数の絶対測定が行われた AVO28 結晶で格子定数の一様性が良い 4.12 について交互に 2 回 ずつマッピング測定を行った。格子定数の一様性(分布 の標準偏差)は, 4.12 が 9.6 × 10⁻⁹ と 7.3 × 10⁻⁹ で, M.2

Figure 3 Avogadro crystal Avo28 and $\Delta d/d$ mapping for 4.12, XINT, 9.R1 and 10.5.

Table 1.	Characterization	of Avogadro	silicon	crystals AVO28
----------	------------------	-------------	---------	----------------

	4.12	XINT	9.R1	10.5
Axial distance from seed (mm)	175.4	306	419.8	> 419.8
$\Delta d/d$ distribution (standard deviation)	4.8×10^{-9}	5.5×10^{-9}	1.7×10^{-8}	1.2×10^{-8}
Carbon ($\times 10^{15}$ /cm ³)	0.182(83)	1.07(10)	2.990(196)	\geq 2.990
Oxygen ($\times 10^{15}$ /cm ³)	0.196(23)	0.369(33)	0.440(38)	≥ 0.440
Boron ($\times 10^{15}$ /cm ³)	0.0196(17)	0.004(1)	0.344(28)	≥ 0.344

Figure 4 $\Delta d/d$ mapping for Si28-23Pr11 M.2.

が 8.3 × 10⁻⁹ と 9.6 × 10⁻⁹ であった。この時は PF が蓄積モ ードでの運転であったため分解能が若干悪くなっている。 Fig. 4 に M.2 の格子定数分布を示す。結晶 M.2 の一様性は 4.12 と同程度であり、この新しい結晶も格子定数を決定す るのに適していることが確認できた。

二結晶間の格子定数の相対差は、それぞれのマッピング データの平均の差を比較することによって評価できる。そ れぞれ異なる結晶のマッピングデータの平均を比較するた めに、測定では注意深く結晶の姿勢を調整して行った。絶 対測定により格子定数が決められている AVO28 と結晶間 で格子定数を比較することにより、Si28-23Pr11 結晶の格 子定数を決定した。この結果は、新結晶を用いたアボガド 口定数決定に用いられた。

4. まとめ

SI 基本単位の一つである質量単位キログラムは歴史上 初めて人工物から切り離され,普遍的な基礎定数であるプ ランク定数によって再定義された。このキログラムの再定 義を実現するべく行われたアボガドロ国際プロジェクトの 中で,KEK-PFのSRLCを用いて行われた格子定数の超精 密比較測定について概観した。キログラムが新しい定義と なった現在,XRCD法とキッブルバランス法がキログラム の定義を現示する方法となる。同位体濃縮²⁸Si単結晶を用 いるXRCD法によってキログラムの新しい定義を現示す る新たな単結晶シリコンも作製されており,SRLCを用い た結晶評価も不可欠となる。また,SRLCでは超精密な格 子定数分布を計測することが可能であり,SRLCによる不 純物などの欠陥評価を目指している。

謝辞

本研究の KEK での放射光実験は、PF-PAC の承認(課題 番号 2008G682, 2010U001, 2012S2-004, 2016S2-003)のも とで実施された。

引用文献

- [1] P. Becker, Rep. Prog. Phys. 64, 1945 (2001).
- [2] K. Fujii *et al.*, Metrologia **53**, A19 (2016).
- [3] D. B. Newell *et al.*, Metrologia **55**, L13 (2018).
- [4] B. Andreas *et al.*, Metrologia. **48**, S1 (2011).
- [5] Y. Azuma et al., Metrologia 52, 360 (2015).
- [6] G. Bartl *et al.*, Metrologia **54**, 693 (2017).

- [7] E. Massa, G. Mana, L. Ferroglio, E. G. Kessler, D. Schiel and S. Zakel, Metrologia 48, S44 (2011).
- [8] E. Massa, C P Sasso, G Mana and C Palmisano, J Phys. Chem. Ref. Data 44, 031208 (2015).
- [9] X. W. Zhang, H. Sugiyama, M. Ando, Y. Imai and Y. Yoda, J. Appl. Crystallogr. 36, 188 (2003).
- [10] H. Fujimoto, A. Waseda and X. W. Zhang, Metrologia 48, S55 (2011).
- [11] A. Waseda, H. Fujimoto, X. W. Zhang, N. Kuramoto and K. Fujii, IEEE Trans. Instrum. Meas. 64, 1692 (2015).
- [12] A. Waseda, H. Fujimoto, X. W. Zhang, N. Kuramoto and K. Fujii, IEEE Trans. Instrum. Meas. 66, 1304 (2017).
 (原稿受付日:2019年3月25日)

著者紹介

早稻田篤 Atsushi WASEDA

産業技術総合研究所 計量標準総合センター 主任研究員 〒 305-8563 茨城県つくば市梅園 1-1-1 中央第 3 TEL: 029-861-4327 FAX: 029-861-4280 e-mail: waseda.atsushi@aist.go.jp

略歷:1994年東京大学大学院工学系研究科博士課程修了, 1994年筑波大学物質工学系助手,1996年工業技術院計量 研究所。博士(工学)。

最近の研究:固体密度比較,密度標準,自己参照型格子比 較器。

産業技術総合研究所

藤本弘之 Hiroyuki FUJIMOTO

計量標準総合センター (現 株式会社島津製作所) e-mail: fujimoto.hiroyuki.fb9@shimadzu.co.jp 略歴:1990年東北大学大学院理学研究科 博士課程修了,1990年工業技術院計量研

究所,2019年株式会社島津製作所。博士(理学)。 最近の研究:X線干渉計,自己参照型格子比較器,X線光 学,X線を用いた精密形状計測,角度標準。

張小威 Xiaowei ZHANG

中国科学院高能研究所 教授 中華人民共和国北京市玉泉路 19 号 TEL: +86-10-8823-5988 e-mail: zhangxw@ihep.ac.cn 略歴: 1989 年東京大学工学系研究科博 士課程修了, 1989 年高エネルギー物理

学研究所。2015年現職。博士(工学)。 最近の研究:6 GeV 放射光光源の建設,X線干渉計,自己 参照型格子比較器。