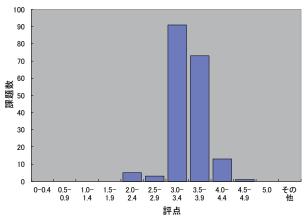
放射光共同利用実験審查委員会速報

放射光実験施設運営部門 君島堅一、兵藤一行

今回の放射光共同利用実験審査委員会 (PF-PAC) は, 2020年7月1日分科会 (生命科学 I), 7月2日分科会 (電子物性,構造物性), 7月7日分科会 (化学・材料), 7月9日分科会 (生命科学 II), 7月10日全体会議の日程で開催されました。全体会議は午前に物質構造科学研究所報告,および,課題審査,午後に放射光実験施設報告,および,PF-PAC制度の改正など実験施設運営に関する重要事項の報告・議論がなされました。今回は年間4回開催予定の全体会議の1回目になります。

委員会での審査の結果、実験課題の採択は p47 のとおりとなりました。その後、物質構造科学研究所運営会議の審議を経て最終決定となり実験課題申請者には審査結果の連絡がなされました。今回の実験課題審査から PF-PAC での議論等を経て評価基準が変更されていて新しい評価基準での初めての実験課題審査でした。

参考:放射光共同利用実験課題審査手続き・評価基準


https://www2.kek.jp/uskek/apply/pfpac_process.html

1. G型課題

2020年5月15日に締め切られた2020年度後期共同利用実験課題公募には180件の実験課題申請があり、審査の結果、採択課題163件、条件付き採択課題13件、不採択課題4件となりました。実験課題の採択基準は全体会議での審議により、評点2.5以上と設定されました。

条件付き採択課題は、申請者からの補足説明に関して PF-PAC 委員長の判断により条件が解除されて実施可能と

令和 2 年度後期PAC 評点分布

なります。条件付き採択課題となった課題の決定通知書には、条件に関する最初の返答(最終返答でなくても結構です)に関する期限を明記してあります。それまでに返答が無い場合には不採択となりますのでご注意下さい。

今回も、試料名とその安全性に関する記述が十分でないために条件付き採択課題となった課題がありました。試料の安全性や安全確保策がわかるように申請書 V の欄に詳細に記述してください。条件付き採択課題への条件の一例を下記に示します。今後の課題申請時の参考にしていただきますよう改めてお願いいたします。

条件付き採択課題の条件の例

- タンパク質結晶試料の由来生物種, 試料の病原性や毒性 の有無を PF-PAC 委員長に報告して下さい。
- 課題名が包括的すぎるので具体的な課題名にして PF-PAC 委員長に報告してください。

また、条件付き採択課題とはならなくても、申請書 V 欄への記述が不十分な申請書が多く見られます。この欄には、上述のように試料名とその安全性について記入していただくことになっています。施設の安全担当者が判断しやすいように、この欄には必ず詳細を記述していただくように改めてお願いします。

PFを利用して出版された論文の登録を促進するために、これまでに採択・実施された実験課題からの報告論文数が少ない実験課題申請者に対しては、実験課題申請時に新たな論文登録をしていただくか、論文出版ができなかった理由書を提出していただくように実験課題申請システムにて設定されています(イエローカード方式)。以下に示す通り、提出された理由書の内容を PF-PAC で検討して実験課題評点を減点する場合があります。評点が減点されている場合は実験課題申請者には審査結果とともに、その旨、通知されます。イエローカード方式に関する制度も今回から変更になり、論文登録状況に対応した評点減点基準は設定せず、評点減点に関しては PF-PAC で総合的に判断することになりました。

参考:放射光共同利用実験課題審査手続き・評価基準

https://www2.kek.jp/uskek/apply/pfpac process.html

現在のイエローカード制度(2020年度から)

申請課題の採択時(採択された場合の有効期間の初日, 4/1 もしくは 10/1)から遡り,有効期間が終了して 1 年から 6 年経過した課題(P 型課題を除く)が 3 件以上ある場合について,

1. 採択課題数の1/2以上の課題について論文が登録されていない実験責任者には、申請時に事情を照会します。

- 2. 実験責任者からの回答に基づいて問題点の解析を行い、評点を決定する際に考慮します。
- 3. 回答がない実験責任者の申請課題は不受理とします。

論文出版時には KEK 研究成果管理システムからの論文 登録を忘れずに、かつ速やかにしていただきますよう改め てお願いします。PF で得られた研究成果の社会への還元 という意味からも積極的な論文登録をお願いします。

また、PFを利用した大学院生の修士論文、博士論文の登録も大学共同利用機関としての重要な指標のひとつですので改めてお願いします。これらは上記評価基準対象外ですが、PF-PACでの審査時の参考にされることもあります。https://www2.kek.jp/imss/pf/use/result/

2. S2 型課題

2020年5月15日に締め切られた2020年後期共同利用 実験課題公募には1件の実験課題申請があり、全体会議で の審査の結果、採択となりました(敬称略)。

実験課題番号:2020S2-002

実験課題名:小惑星探査機「はやぶさ 2」リターンサン

プルの放射光X線回折実験

実験責任者:東北大学大学院 理学研究科 中村智樹

また、前回の PF-PAC において条件付き採択課題となった以下の実験課題は、その後、条件が解除されて採択になりました(敬称略)。

実験課題番号: 2020S2-001

実験課題名:有機エレクトロニクス材料開発のための構

造物性

実験責任者:高エネルギー加速器研究機構 物質構造科

学研究所 熊井玲児

3. T型課題

2020 年 5 月 15 日に締め切られた 2020 年度後期共同利 用実験課題公募への実験課題申請はありませんでした。

4. PF 研究会

今期の申請はありませんでした。

5. 報告事項, 検討事項

以下の項目が PF-PAC で報告、審議されました。

報告事項(抜粋)

・物質構造科学研究所報告(小杉物構研所長) 中期計画の4年目が昨年度終了して評価のための資料を 作成していること,コロナウイルス感染症の影響に関し て安定した運転時間の確保や機能強化について,PF-UA と日本放射光学会から要望書を頂いていること,2020 年4月に量子ビーム連携研究センターを設置して,発掘 型共同利用によるマルチプローブの利用の向上を目指していること、KEK のロードマップは更新に向けて議論が進んでいることなど。

- ・放射光実験施設報告(船守実験施設長) 2020年4月からの測定装置部門の測定手法グループおよび運営部門の新体制について、KEKロードマップ改訂に関する今後の検討日程、今後の加速器運転日程、予算状況、将来計画などについて。
- 2020 年度第一期 (6 月期) ビームタイム配分結果について

コロナウイルス感染症対策により5月から7月まで予定していた第一期のビームタイムはキャンセルとなったが6月下旬に2週間のPF加速器運転を実施したこと,リモート化・自動化に向けた実験や感染症対策に関する各種試行により今後の放射光利用実験への対応に関する貴重な知見が得られたこと,また直近の学位取得に必要な実験にも多くの実験ステーションで対応を実施したこと

参考: PF/PF-AR 2020 年度第一期ビームタイムについて

https://www2.kek.jp/imss/notice/2020/04/091400.html

参考: PF の運転再開について

https://www2.kek.jp/imss/notice/2020/05/291600.html

• KEK からの旅費支給辞退について

今年度から開始した学生への教育サポートのための旅費辞退に関して複数の共同利用者からの連絡があったこと。

参考:学生への教育サポートのための旅費辞退のお願い https://www2.kek.jp/imss/notice/2020/03/251610.html

ユーザーグループ運営ステーション、大学等運営ステーションについて

運営に関する覚書締結の有効期間(3年間)が昨年度に終了したユーザーグループ運営ステーション(BL-4A)について、2020年1月のPF-PACで報告をしたPFおよびPF-UAで設置する委員会が実施した運営に関する活動報告会での継続を承認する審議結果に関連して、その後、ユーザーグループから継続申請書が提出されて正式な運用が開始されていること、今年度で運営に関する有効期間が終了するユーザーグループ運営ステーション(BL-3B、BL-4B2、BL-6C、BL-10A、BL-18C)、大学等運営ステーション(BL-20A)について活動報告会を開催予定であること。

検討事項(抜粋):施設運営に関する重要事項の報告・検討 ○制度変更済の項目(報告事項)

・ 今年度からの制度変更について 旅費支給基準

実験課題審査手続き・評価基準

P型課題規約(初心者型に特化した課題として設定) T型課題締切日(S2型課題, G型課題と同じ日時とすること)

前回までの PF-PAC 全体会議で議論・審議され、今年度

から制度変更になった上記項目について、PF-PAC 委員 長から改めての状況説明がなされるとともに、今回の実 験課題審査に関連して制度運用に関する意見交換を実施 した。制度変更に関して更なる十分な周知が必要である ことなどの意見が出された。

- ○検討中・検討予定の事項
- •PF-PAC 分科会の最適化

PF ビームラインや実験手法の位置づけを明確化し、審査分科会をそれに合わせて設置する PF 内部で検討をしている 6 分科会設置案に関して意見交換を実施した。PF-PAC, PF 内部で、引き続き、検討を進めることとした。

新マルチプローブ課題の設定について(量子ビーム連携 研究センター)

エキスパートタイプとスタンダートタイプの2種類の実験課題設定を検討していることの説明がセンター長からあり、PF-PACでも、引き続き、検討を進めることになった。

その他

次回 PF-PAC 全体会議は 9 月もしくは 10 月の開催を予定。

第 120 回物質構造科学研究所運営会議議事次第

日時: 2020年5月27日(水) 13:30~

開催方法:Web 会議

議事

- 【1】第117, 118, 119回議事要録について
- 【2】所長報告
- 【3】審議
- (1) 次期所長候補者の選考について
- (2) 教員公募(教授1名・中性子)
- (3) 学術研究フェローの雇用計画について (特任助教1名・ミュオン・特定人事)
- 【4】報告事項
- (1) 人事異動
- (2) 研究員の選考結果について
- (3) 博士研究員の選考結果について
- (4) 物構研関連の共同利用施設の運転状況につい
- (5) 量子ビーム連携研究センター報告
- (6) 2020 前期 PF 課題審査結果について(条件解除報告)
- (7) 協定等の締結について(国内機関関係)
- 【5】研究活動報告(資料配布のみ)
- (1) 物質構造科学研究所報告
- (2) 素粒子原子核研究所報告
- (3) 加速器研究施設報告
- (4) 共通基盤研究施設報告

第 121 回物質構造科学研究所運営会議議事次第

日時:2020年7月22日(水) 13:30~

開催方法:Web 会議

議事

- 【1】第120回議事要録について
- 【2】所長報告
- 【3】審議
- (1) 2020年度後期放射光共同利用実験課題審査結果について
- (2) 特定人事(ミュオン 特任助教1名)
- (3) 次期所長候補者の選考について
- 【4】報告事項
- (1) 人事異動
- (2) 協定等の締結について(国内機関関係)
- 【5】研究活動報告(資料配布のみ)
- (1) 物質構造科学研究所報告
- (2) 素粒子原子核研究所報告
- (3) 加速器研究施設報告
- (4) 共通基盤研究施設報告

2020 年度後期放射光共同利用実験採択課題一覧(G型)

受理番号	課 題 名	所属	実験責任者	ビームライン
1. 電子物性				
2020G501	軟X線分光による薄膜型燃料電池の電解質表面及び電極界面の電子構造	東京理科大学	樋口 透	2A/B
2020G518	カイラル反強磁性体Mn3Sn薄膜を含む磁性多層膜の磁気円二色性分光	東京大学	三輪 真嗣	16A
2020G523	チタン酸ストロンチウム結晶にドーピングした軽金属元素の軟X線吸収分 光:近紫外光動作光触媒の構造解析	神戸大学	大西 洋	11A, 11B
2020G537	MBE 法によりエピタキシャル成長した $Mn_{4x}In_xN$ 膜の $XMCD$ 測定	筑波大学	末益 崇	16A
2020G540	カーボンナノチューブに包摂されたイオウ原子鎖の局所構造	富山大学	池本 弘之	11B
2020G541	軟X線発光分光によるリン酸系ゼオライトの部分電子構造	熊本大学	細川 伸也	16A
2020G542	p型酸化物薄膜デバイス開発に向けたスズ酸化物薄膜の電子状態解明	産総研	簑原 誠人	13A/B, 2A/B
2020G548	準大気圧XPSを用いた高分子保護金ナノ粒子触媒による空気酸化反応における反応活性種の直截観測	大阪大学	植竹 裕太	13A/B
2020G551	$\label{eq:constraint} Momentum-resolved electronic structure across the metal-to-insulator transition in V_2O_3, the archetype strongly correlated electron system$	Universite Paris-Sud 11, FRANCE	Andres F. SANTANDER -SYRO	2A/B
2020G577	巨大電気磁気効果を有する新規界面マルチフェロイックスのスイッチング モードを用いたXMCD評価	東北大学	永沼 博	16A
2020G587	高精度複数散乱体 3 次元同時計測	筑波大学	伊藤 雅英	11D
2020G589	単層酸化グラフェンを用いたイオンセンシング材料の開発	量研機構	圓谷 志郎	27A, 27B
2020G595	蛍光収量による波長分散型軟X線XAFSを用いた触媒表面における化学反応のリアルタイム追跡	KEK物構研	雨宮 健太	16A
2020G600	RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究	大阪府立大学	岩住 俊明	7C, 11A, 12C
2020G609	放射光の二次ビーム利用による分子の超高精度な電子衝突断面積測定	東京工業大学	北島 昌史	20A
2020G616	多層膜回折格子を用いたテンダーX線発光分光法の開発とオペランド電子 状態分析への応用	量研機構	今園 孝志	11A, 11B, 11D
2020G619	高分解能XPSによる極低温から高温・常圧下のモデル触媒における不活性 分子の吸着と活性化の研究	東京大学	吉信 淳	13A/B
2020G622	波長分散型軟X線吸収分光法による固液界面における光触媒反応のリアル タイム観察	KEK物構研	阪田 薫穂	16A
2020G623	極端軟X線大気圧XAFSの開発による窒素ドープカーボン系燃料電池のオペランド計測	慶應義塾大学	近藤 寛	13A/B
2020G625	新奇ディラック電子系ボロフェンの構造解析:基板依存性	早稲田大学	高山 あかり	低速陽電子
2020G630	配位数可変なε-Fe ₂ O ₃ マルチフェロイックスの4サイトからなるフェリ磁性の解明	東京工業大学	安井 伸太郎	16A
2020G631	多孔体表面から真空中に放出されるポジトロニウムのエネルギー分布の測 定	東京大学	石田 明	低速陽電子
2020G634	遍歴系磁気スキルミオン物質の電子構造	東京大学	石坂 香子	2A/B
2020G636	軟X線用ウォルターミラーの開発と分光顕微鏡への応用	筑波大学	渡辺 紀生	11D
2020G637	Tender領域での透過異常小角散乱法の定量化とAl-Mg系多元合金の組織形成研究への応用	京都大学	奥田 浩司	6A, 11A, 13A/B
2020G652	溶液プロセスで作製した非晶質酸化物薄膜の局所構造評価	東京大学	坂井 延寿	7A
2020G664	半導体への複数種不純物の共ドープによる電気的活性化率の増大制御	東京工業大学	筒井 一生	13A/B
2020G669	軟X線ARPESによる反強磁性トポロジカル絶縁体および半金属の研究	東北大学	相馬 清吾	2A/B
2020G685	4D-XPS法の開発	東北大学	豊田 智史	2A/B
2. 構造物性				
2020G503	酸化物ナノシートのヘテロ積層と結晶構造解析	物材機構	坂井 伸行	6C
2020G504	放射光X線を用いた動的超分子ベアリングの単結晶構造解析	東京大学	松野 太輔	17A
2020G505	X線CTR散乱高速測定法による全固体電池正極界面のオペランド観察	産総研	白澤 徹郎	4C, NW2A, 3A
2020G511	コバルトの高温高圧変形実験	愛媛大学	西原 遊	NE7A
2020G517	SiC上ツイスト2層グラフェンの構造に関する研究	九州大学	田中 悟	4C, 3A
2020G526	超伝導を示すトポロジカル物質 $\mathrm{Bi_2Te_3/FeTe}$ 界面の構造	東北大学	若林 裕助	3A
2020G535	高融点高硬度マントル鉱物(Ru,Os)S2固溶体の構造精密化	熊本大学	吉朝 朗	10A
2020G638	Ni ₃ S ₄ -NiFe ₂ S ₄ 固溶体中のFeおよびNiの分布および価数状態の解明	東北大学	徳田 誠	6C, 9A
2020G543	Fe ₃ O ₄ /BaTiO ₃ 界面の電子状態変化による界面磁気構造・相転移の制御	東京大学	福谷 克之	NE1A
2020G544	メタンハイドレートの高温高圧安定性に与えるアンモニアの影響の検討	物材機構	門林 宏和	18C
2020G545	水素ハイドレートの高温高圧下における物性変化と新規な水素-水系物質 の探査	立正大学	平井 寿子	18C
2020G546	酸化によって引き起こされるマグネタイト $[Fe^{3+}(Fe^{2+},Fe^{3+})O_4]$ の結晶構造変化	筑波大学	興野 純	10A
2020G547	層状ペロプスカイト酸化物イオン伝導体の高分解能X線回折データに基づ く結晶構造解析	東京工業大学	藤井 孝太郎	4B2
2020G554	Study of the electronic structures of a double-helical spin ordering in YBaCuFeO 5	Tamkang University, TAIWAN	Chao-Hung DU	3A

2020/257 お田本祭用馬のボアイヌボーザブルク・フルーAの評価	20200202	TIME 1 (-401) 0 1 (K >) 1 (A) (N (M II >) 1 / N (M II) (N II)	1014/5/2	1361-01 1/2 1	100
2020638 紫光橋 1977 7 で	2020G572	高圧実験用6-6式ディスポーザブルフレームの評価	愛媛大学	渕崎 員弘	NE5C
### 202006393	2020G575		群馬大学	鈴木 宏輔	3C
2020/05/95 ジルコンの新学院主族ゲイドミクスの作用	2020G581		名古屋工業大学	木村 耕治	6C
202050592	2020G582	複数f電子系Sm化合物の異常磁性と磁気構造の研究	広島大学	比嘉 野乃花	3A
2020(1992	2020G584	ジルコンの衝撃変成ダイナミクスの解明	KEK物構研	髙木 壮大	NW14A
20206599 低電下に対ける駅系配性イヤン酸やの雑品機治解析 時間大学校 下野 型失 88 20206604 東大学や 大田 正 8.4 8.5	2020G586	Al_2O_3 -Si O_2 系で新規に合成された $Al_2Si_2O_7$ 高圧多形の結晶構造解析	東北大学	栗林 貴弘	10A
2020(3599 ペニプスカイト太陽電池に用いる有機影響、中ン化館の報品構造の解析 現化学研究所 株品 18℃ 18℃ 18℃ 19℃ 1	2020G592	光固液相転移化合物の結晶における時間分解X線回折	産総研	則包 恭央	NW14A
20206649 株式火帯・ビアカット how samilaries Cu Fu Cu	2020G598	低温下における鉄系磁性イオン液体の結晶構造解析	防衛大学校	下野 聖矢	8B
2020G601	2020G599	ペロブスカイト太陽電池に用いる有機無機ハロゲン化鉛の結晶構造の解析	理化学研究所	柴山 直之	8A
2015(69)	2020G604	·	筑波大学	興野 純	18C
2020G613	2020G605	こす構造相転移	名古屋大学	水津 理恵	8A
20206641	2020G607	のための結晶構造解析	名古屋大学	珠玖 良昭	8A
2020G614 血素素表面に吸着したカフェイン分子の構造解析 物外横横 他人間 時 4C, 3A 2020G615 鉄系経信導体における電荷軟件と超信導の相関の専門 大阪大学 中島 正道 4C 2020G612 電子が除かっクフィーによる構造地材料之所・プCulnSc ₂ の研究 要处学で、自力 位 4C 8A NE1A 2020G612 電子が除かっクフィーによる構造地材料之所・プCulnSc ₂ の研究 要放大学 自力 4C 8A NE1A 3A 2020G622 電子が除かっクフィーによる構造地材料之所・プCulnSc ₂ の研究 要放大学 自力 4C 8A NE1A 3A 2020G632 適圧不RF以業能によるアルカリテトライド材料の構造相称形に関する研究 接象大学 久来 他二 18C 電子が除が、アクスターの基本を持ている。 2020G632 適圧下でのマグネックム塩化物の木和砂の相関係と構造解析 成正下でのサイネックム塩化物の木和砂の相関係と構造解析 成正下でのサイネックム塩化物の木和砂の相関係と構造解析 表は収分 18C 東京大学 最本 大佐 NESC 2020G634 A 会は収分 の 地 preparation and crystallographic characteristic of zeolis-based man-phosphor matchial for display application 2020G665 電気が乗業が下と返行を発生しまるを発表を表しまるが表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表が表	2020G613		山形大学	北浦 守	6C
2020G612 時間分解結晶構造解析を用いた衝撃圧縮下におけるカーボンナノリングの 原子・分解能構造組織	2020G614		物材機構	佐久間 博	4C, 3A
2020G622	2020G615	鉄系超伝導体における電荷秩序と超伝導の相関の解明	大阪大学	中島 正道	4C
AC, BA, NEIA	2020G617		理化学研究所	星野 学	NW14A
2020G632 高圧KRD実験によるアルカリテトライド材料の構造相転移に関する研究	2020G627	蛍光X線ホログラフィーによる太陽電池材料ZnドープCuInSe2の研究	愛媛大学	白方 祥	6C
2020G649	2020G628	Re酸化物における多極子秩序の研究	KEK物構研	佐賀山 基	
2020G640 高圧下その場XAFS-XRD複合測定によるマグマ中のXeの化学状態の解明 KEK物構研 若林 大佑 NE5C 2020G651 A study on the preparation and crystallographic characteristic of zeolite-based unap-phosphor material for display application University, KOREA The Manaphosphor material for display application University, KOREA HEO 5A 2020G665 電気化学環境下におけるPt合金単結晶を確保所のPtwadeを研究 神奈川大学 夢野 選 8A, 8B AB 2020G666 カーボンナノチューブを用いた選択的分子吸着の研究 神奈川大学 夢野 選 8A, 8B 3A 2020G665 G金属間化合物におけるトポロジカル磁気経構造 東京大学 有馬 挙向 3A 2020G666 アルカリ超酸化物の圧力下結晶構造 関山大学 神戸 高志 8A 2020G671 表面X N N N T N N N N N N N N N N N N N N N	2020G632	高圧XRD実験によるアルカリテトライド材料の構造相転移に関する研究	岐阜大学	久米 徹二	18C
2020G651 A study on the preparation and crystallographic characteristic of zeolite-based anno-phosphor material for display application anno-phosphor material for display application	2020G635	高圧下でのマグネシウム塩化物の水和物の相関係と構造解析	東京大学	鍵 裕之	18C
2020G655 電気化学環境下における中含金単結晶電橋界面のoperando表面X線散乱 山梨大学 川本 鉄平 3A	2020G640		KEK物構研	若林 大佑	NE5C
2020G660 カーボンナノチューブを用いた選択的分子吸着の研究 神奈川大学 客野 遥 8A、8B 2020G663 プロトン伝導性SrTi系層状ペロブスカイトの結晶構造解析 名古屋工業大学 龍宮 功 4B2 2020G665	2020G651	nano-phosphor material for display application	, ,,		5A
2020G663	2020G655	電気化学環境下におけるPt合金単結晶電極界面のoperando表面X線散乱	山梨大学	川本 鉄平	3A
2020G665 Gd金属間化合物におけるトボロジカル磁気経構造 東京大学 有馬 孝尚 3A 2020G666 アルカリ超酸化物の圧力下結晶構造 岡山大学 神戸 高志 8A 2020G671 表面X線散乱法によるアイオノマー/白金電極界面のその場構造決定 物材機構 増田 卓也 3A 2020G672 ボストスピネル相転移と変形の相互作用 九州大学 久保 女明 NE7A 2020G680 Temporal Evolution of Twin Structures in Nanotwinned Copper under Shock Compression X-ray scattering study of magnetically ordered epitaxial iron oxide films on nitride semiconductor substrates 3A 2020G682 X線でTR散乱高速調定法による全箇体電池正極界面のオペランド観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G505 X線でTR散乱高速調定法による全箇体電池正極界面のオペランド観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌素層への 定素機集メカニズムの解明 一般 北土 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科菌科大学 宇尾 基弘 4A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科菌科大学 宇尾 基弘 4A 2020G532 Ru・O系系族・6族元素化合物鉱物の周評構造と天然白金族化合物の物性 東京大学 古朝 朗 9C, NW10A 2020G532 Ru・O系系族・6族元素化合物鉱物の周評構造と天然白金族化合物の物性 東京本学 伊藤 敦 11B, 4A 2020G533 黒鈴層間に挿入した貴金属塩化物の構造及び還元構造な関帯の検討 東京理科大学 原研機構 漢部 自 27B 2020G588 出曲クロマトグラフィ用吸着材内の関体構造解析 原研機構 東京理科大学 原研機構 東京経科化学 原研経構 東京経科に表されてよるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いた八本電池正板材料Na ₂₀ Gn ₁₀ Mn ₈₀ O ₂ の長寿命化機 東京理科大学 駒場 慎一解明 12C 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 最研機構 風命 志郎 27A 27B 2020G589 中間分解XAFS 調定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 大阪市立大学 岩柱 使介 9A, NW10A 2020G690 RbMnFe(CN) ₂ の温度相転移中間相の電子状態・構造研究 大阪市立大学 岩柱 使介 5A, NW10A 2020G690 RbMnFe(CN) ₂ の温度相転移中間相の電子状態・構造研究 大阪市立大学 岩柱 使介 5A, NW10A 2020G690 RbMnFe(CN) ₂ の温度相転移中間相の電子状態・構造研究 大阪市立大学 岩柱 使介 5A, NW10A 2020G690 RbMnFe(CN) ₂ の温度和がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がより解析で表がよりに表がます。 5A, NW10A 5A, NW10A	2020G660	カーボンナノチューブを用いた選択的分子吸着の研究	神奈川大学	客野 遥	8A, 8B
2020G666	2020G663	プロトン伝導性Sr-Ti系層状ペロブスカイトの結晶構造解析	名古屋工業大学	籠宮 功	4B2
2020G671 表面X線散乱法によるアイオノマー/白金電極界面のその場構造決定 物材機構 増田 卓也 3A 2020G672 ポストスビネル相転移と変形の相互作用 九州大学 久保 友明 NE7A NETA NE7A NE7A NE7A NE7A NE7A NETA NE7A NE7A NETA	2020G665	Gd金属間化合物におけるトポロジカル磁気超構造	東京大学	有馬 孝尚	3A
2020G672 ポストスピネル相転移と変形の相互作用	2020G666	アルカリ超酸化物の圧力下結晶構造	岡山大学	神戸 高志	8A
2020G680 Temporal Evolution of Twin Structures in Nanotwinned Copper under Shock Compression Southwest University of Science and Technology, CHINA Technology, CHINA Technology, CHINA Technology, CHINA Technology, CHINA Indication of Science and Technology, CHINA Technology, CHINA Indication of Science and Technolo	2020G671	表面X線散乱法によるアイオノマー/白金電極界面のその場構造決定	物材機構	増田 卓也	3A
2020G680 Compression Lemporal Evolution of Ivin Structures in Nanotwinned Copper under Shock Compression of Science and Technology, CHINA Jianbo HU NW14A NW14A 2020G682 X-ray scattering study of magnetically ordered epitaxial iron oxide films on nitride semiconductor substrates Icities Institute, RUSSIA Sergey Michailovich 3A 3. 化学・材料 2020G505 X線CTR散乱高速測定法による全固体電池正極界面のオペランド観察 産総研 白澤 徹郎 4C, NW2A, 3A 立と素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層への 上素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 12C, 4A 2020G522 フローケミストリー詳細解明のためのXAFS-IR測定技術の開発 産総研 日隈 聡士 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 字尾 基弘 4A 2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 東京大学 伊藤 敦 11B, 4A 2020G534 製がの心早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相 東海大学 伊藤 敦 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G588 抽力ロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G589 単層酸化グラフェンを用いたパイオンセンシング材料の開発 量研機構 園谷 志郎 27A, 27B 2020G589 単層酸化グラフェンを用いた光触媒的は水分解反応の追跡 KEK物構研 金澤 知歌 NW14A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 大阪府立大学 岩住 俊明 7C, 11A, 12C	2020G672	ポストスピネル相転移と変形の相互作用		久保 友明	NE7A
2020G682 X-ray scattering study of magnetically ordered epitaxial iron oxide films on nitride semiconductor substrates Ioffe Institute, RUSSIA Sergey Michailovich 3A 3. 化学・材料 2020G505 X線CTR散乱高速測定法による全固体電池正極界面のオペランド観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層への ヒ素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 2020G522 フローケミストリー詳細解明のためのXAFS-IR測定技術の開発 産総研 日隈 聡士 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 字尾 基弘 4A 2020G531 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討 東海大学 伊藤 教 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G561 抽出クロマトグラフトルへ和電池正極材料Na _{2/3} Zn _{1/9} Mn _{8/9} O ₂ の長寿命化機 東京里科大学 駒場 慎一 12C 東京理科大学 駒場 慎一 12C 2020G588 光定常状態 X線標造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 27A, 27B 2020G597 時間分解XAFS測定を用いた光触媒的な水分解反のの過速解析 基研機構 国容 志郎 27A, 27B 2020G596* Fe ^{2*} Fe ^{3*} 溶液の局所構造解析 第次 丹羽 秀治 9A <t< td=""><td>2020G680</td><td></td><td>of Science and</td><td>Jianbo HU</td><td>NW14A</td></t<>	2020G680		of Science and	Jianbo HU	NW14A
3. 化学・材料 2020G505 X線CTR散乱高速測定法による全固体電池正極界面のオペランド観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層へのと素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 2020G522 フローケミストリー詳細解明のためのXAFS-IR測定技術の開発 産総研 日隈 聡土 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 字尾 基弘 4A 2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相 関の検討 東海大学 伊藤 敦 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出力ロマトグラフィ用吸着材内の錆体構造解析 原研機構 渡部 創 27B 2020G561 X線吸収分光測定法を用いたNa電池正極材料Na ₂₉ Zn ₁₉ Mn ₈₉ O ₂ の長寿命化機構の解明 東京理科大学 駒場 慎一 12C 2020G588 光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 固合 志郎 27A, 27B 2020G596* Fe ^{2*} /Fe ^{3*} 溶液の局所構造解析 第波大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G660 RbMnFe(CN) ₆ の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C	2020G682	X-ray scattering study of magnetically ordered epitaxial iron oxide films on nitride		Sergey	2 Λ
2020G505 X線CTR散乱高速測定法による全固体電池正極界面のオペラント観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層への 上素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 2020G522 フローケミストリー詳細解明のためのXAFS-IR測定技術の開発 産総研 日隈 聡士 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 宇尾 基弘 4A 2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討 東海大学 伊藤 教 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G558 光定常状態な発標造解析によるネットワーク錯体の励起構造の解明 東京理科大学 駒場 慎一 12C 2020G588 光定常状態X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 園谷 志郎 27A, 27B 2020G597 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G597 市 situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 R	20200002	semiconductor substrates	RUSSIA	Michailovich	<i>JA</i>
2020G505 X線CTR散乱高速測定法による全固体電池正極界面のオペラント観察 産総研 白澤 徹郎 4C, NW2A, 3A 2020G513 マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層への 上素濃集メカニズムの解明 愛媛大学 光延 聖 12C, 4A 2020G522 フローケミストリー詳細解明のためのXAFS-IR測定技術の開発 産総研 日隈 聡士 9C, NW10A 2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 宇尾 基弘 4A 2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討 東海大学 伊藤 教 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G558 光定常状態な発標造解析によるネットワーク錯体の励起構造の解明 東京理科大学 駒場 慎一 12C 2020G588 光定常状態X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 園谷 志郎 27A, 27B 2020G597 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G597 市 situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 R	0 11.34 14.	lal			
2020G513マイクロXAFS法を用いた微視的な化学種解析に基づく水田土壌表層への ヒ素濃集メカニズムの解明愛媛大学光延 聖12C, 4A2020G522フローケミストリー詳細解明のためのXAFS-IR測定技術の開発産総研日隈 聡士9C, NW10A2020G529*口腔および消化管粘膜組織中での微量金属元素分布の分析東京医科歯科大学宇尾 基弘4A2020G532Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性熊本大学吉朝 朗9C, NW10A2020G534乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討東海大学伊藤 敦11B, 4A2020G539黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析岩手大学白井 誠之9A, 9C, NW10A2020G558抽出クロマトグラフィ用吸着材内の錯体構造解析原研機構渡部 創27B2020G561X線吸収分光測定法を用いたNa電池正極材料Na2/3Zn1/9Mn8/9O2の長寿命化機構の解明東京理科大学駒場 慎一12C2020G588光定常状態X線構造解析によるネットワーク錯体の励起構造の解明東京工業大学河野 正規 NW2A2020G589単層酸化グラフェンを用いたイオンセンシング材料の開発量研機構圓谷 志郎27A, 27B2020G593時間分解XAFS測定を用いた光熱媒的な水分解反応の追跡KEK物構研金澤 知器 NW14A2020G596*下e ^{2*} Fre ^{3*} 溶液の局所構造解析筑波大学丹羽 秀治 9A2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤 俊介9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住 俊明7C, 11A, 12C				/ Vm Ablatia	
2020G513 2020G522と素濃集メカニズムの解明変数大字光速型 12C, 4A2020G522フローケミストリー詳細解明のためのXAFS-IR測定技術の開発産総研日隈聡士9C, NW10A2020G529* 2020G532 2020G532 2020G532 2020G534口腔および消化管粘膜組織中での微量金属元素分布の分析東京医科歯科大学宇尾基弘4A2020G534 	2020G505		産総 研	日澤 徹郎	4C, NW2A, 3A
2020G529* 口腔および消化管粘膜組織中での微量金属元素分布の分析 東京医科歯科大学 宇尾 基弘 4A 2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 関の検討 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相 関の検討 東海大学 伊藤 敦 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G561 X線吸収分光測定法を用いたNa電池正極材料Na ₂₀ Zn ₁₀ Mn ₈₀ O ₂ の長寿命化機構の解明 東京理科大学 駒場 慎一 12C 2020G588 光定常状態X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 圓谷 志郎 27A, 27B 2020G593 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G596* Fe ²⁺ /Fe ³⁺ 溶液の局所構造解析 第次大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 RbMnFe(CN) ₆ の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C		ヒ素濃集メカニズムの解明			
2020G532 Ru・Os系5族・6族元素化合物鉱物の局所構造と天然白金族化合物の物性 熊本大学 吉朝 朗 9C, NW10A 2020G534 乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討 東海大学 伊藤 敦 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G561 X線吸収分光測定法を用いたNa電池正極材料Na2/3Zn1/9Mn8/9O2の長寿命化機構の解明 東京理科大学 駒場 慎一 12C 2020G588 光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 圓谷 志郎 27A, 27B 2020G593 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G596* Fe²*/Fe³*溶液の局所構造解析 筑波大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C					
2020G534乳がんの早期簡易診断を目指した毛髪内Ca分布と乳がん病理データとの相関の検討東海大学伊藤 教11B, 4A2020G539黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析岩手大学白井 誠之9A, 9C, NW10A2020G558抽出クロマトグラフィ用吸着材内の錯体構造解析原研機構渡部 創27B2020G561X線吸収分光測定法を用いたNa電池正極材料Na2/3Zn1/9Mn8/9O2の長寿命化機構の解明東京理科大学駒場 慎一12C2020G588光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明東京工業大学河野 正規 NW2A2020G589単層酸化グラフェンを用いたイオンセンシング材料の開発量研機構圓谷 志郎 27A, 27B2020G593時間分解XAFS測定を用いた光触媒的な水分解反応の追跡KEK物構研金澤 知器 NW14A2020G596*Fe²*/Fe³*溶液の局所構造解析筑波大学丹羽 秀治 9A2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤 俊介 9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住 俊明 7C, 11A, 12C	-				
関の検討 果海大学 伊藤 教 11B, 4A 2020G539 黒鉛層間に挿入した貴金属塩化物の構造及び還元構造に関するXAFS解析 岩手大学 白井 誠之 9A, 9C, NW10A 2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G561 X線吸収分光測定法を用いたNa電池正極材料Na ₂₃ Zn _{1,9} Mn _{8,9} O ₂ の長寿命化機 東京理科大学 駒場 慎一 12C 2020G588 光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 圓谷 志郎 27A, 27B 2020G593 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G596* Fe ²⁺ /Fe ³⁺ 溶液の局所構造解析 筑波大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 RbMnFe(CN) ₆ の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C	2020G532		熊本大学	吉朝 朗	9C, NW10A
2020G558 抽出クロマトグラフィ用吸着材内の錯体構造解析 原研機構 渡部 創 27B 2020G561 X線吸収分光測定法を用いたNa電池正極材料Na _{2/3} Zn _{1/9} Mn _{8/9} O ₂ の長寿命化機 東京理科大学 駒場 慎一 12C 2020G588 光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 圓谷 志郎 27A, 27B 2020G593 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G596* Fe ²⁺ /Fe ³⁺ 溶液の局所構造解析 筑波大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 RbMnFe(CN) ₆ の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C		関の検討			
2020G561 X線吸収分光測定法を用いたNa電池正極材料Na _{2/3} Zn _{1/9} Mn _{8/9} O ₂ の長寿命化機構の解明 東京理科大学 原場 慎一 12C 2020G588 光定常状態 X線構造解析によるネットワーク錯体の励起構造の解明 東京工業大学 河野 正規 NW2A 2020G589 単層酸化グラフェンを用いたイオンセンシング材料の開発 量研機構 圓谷 志郎 27A, 27B 2020G593 時間分解XAFS測定を用いた光触媒的な水分解反応の追跡 KEK物構研 金澤 知器 NW14A 2020G596* Fe ²⁺ /Fe ³⁺ 溶液の局所構造解析 筑波大学 丹羽 秀治 9A 2020G597 in situ XAFSによる構造解析に基づいた水素発生光触媒の開発 KEK物構研 野澤 俊介 9A, NW10A 2020G600 RbMnFe(CN) ₆ の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C					
構の解明	2020G558		原	渡部 創	2/B
2020G589単層酸化グラフェンを用いたイオンセンシング材料の開発量研機構圓谷 志郎27A, 27B2020G593時間分解XAFS測定を用いた光触媒的な水分解反応の追跡KEK物構研金澤 知器 NW14A2020G596*Fe²+/Fe³+溶液の局所構造解析筑波大学丹羽 秀治9A2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤 俊介9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住 俊明7C, 11A, 12C		構の解明			
2020G593時間分解XAFS測定を用いた光触媒的な水分解反応の追跡KEK物構研金澤知器NW14A2020G596*Fe2+/Fe3+溶液の局所構造解析筑波大学丹羽秀治9A2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤俊介9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住俊明7C, 11A, 12C					
2020G596*Fe2+/Fe3+溶液の局所構造解析筑波大学丹羽 秀治9A2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤 俊介9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住 俊明7C, 11A, 12C	-				
2020G597in situ XAFSによる構造解析に基づいた水素発生光触媒の開発KEK物構研野澤 俊介9A, NW10A2020G600RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究大阪府立大学岩住 俊明7C, 11A, 12C					
2020G600 RbMnFe(CN)6の温度相転移中間相の電子状態・構造研究 大阪府立大学 岩住 俊明 7C, 11A, 12C					
	-				
2020G606* 日金族宮有合金のXAFS解析 東京都市大学 松浦 治明 27B		1 1			
	2020G606*	日金族含有合金のXAFS解析	 果只都市大学	松浦 治明	27B

北海道大学

篠崎 彩子

18C

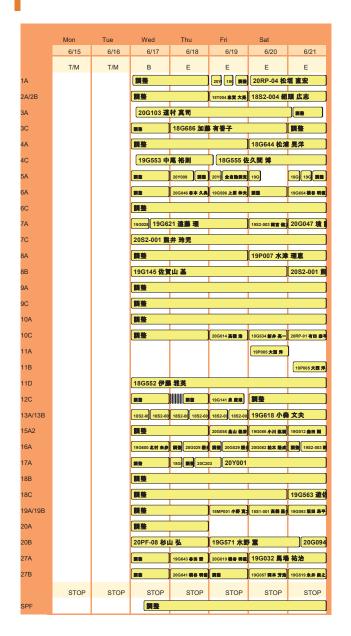
2020G562

室温、高温下におけるギ酸の分子間水素結合の圧力変化と化学反応

2020G608*	重金属トランスポーターを高発現したイネカルスにおけるカドミウムの蓄 積機構の解明	東京電機大学	保倉 明子	9A, NW10A, 4A
2020G611	斜長岩質月試料に含まれる斜長石の鉄価数測定から推測する月地殻の形成 環境	東京大学	三河内 岳	4A
2020G620	Understanding the charge-carrier dynamics in single atomic ruthenium catalyst adsorbed on hematite by time-resolved X-ray absorption spectroscopy	Yonsei University, KOREA	Tae Kyu Kim	NW14A
2020G621	Co/ZSM-5触媒のin situ XAFS および質量分析計の同時測定による構造解析	工学院大学	奥村 和	9A, 9C
2020G626	H_2O を電子源とした CO_2 の光還元に活性を示す A g修飾光触媒の XAS による構造解析	京都大学	朝倉 博行	12C, NW10A
2020G638	Ni_3S_4 - $NiFe_2S_4$ 固溶体中の Fe および Ni の分布および価数状態の解明	東北大学	徳田 誠	6C, 9A
2020G639	STXMによる岩石学的アプローチから探る太陽系有機物の進化	横浜国立大学	癸生川 陽子	19A/B
2020G643	オペランド偏光全反射蛍光XAFS法による単原子触媒の活性点三次元構造 解析	北海道大学	高草木 達	9A
2020G644	融合成長機構によるマルチハイブリッド型合金ナノ粒子の電子状態解析	千葉大学	森田 剛	12C
2020G646	銅錯体による絹フィブロインの染色機構に関する研究	茨城大学	高妻 孝光	9A, 9C, 12C
2020G650	XANESを用いた衝撃による長石中の鉄の価数変化の評価	千葉工業大学	佐竹 渉	4A
2020G653	in situ XAFS測定によるアンモニア合成触媒の構造解析および活性発現機構 の解明	産総研	西 政康	NW10A
2020G654	オペランド全元素XAFS観測を活かした活性構造制御による三次元水分解 触媒の開発	山口大学	吉田 真明	9A
2020G656	時間分解pump-probe XASによるCs ₃ Cu ₂ I ₅ の発光原理の解明	KEK物構研	丹羽 尉博	9A, NW14A
2020G657	XAFSによる新規p型酸化物開発に向けたSn ²⁺ 系パイロクロア酸化物における酸素 欠陥量の評価	東京理科大学	三溝 朱音	9A, 9C, 12C, NW10A
2020G661*	乳歯の放射光マイクロビーム蛍光X線分析:重金属曝露が小児精神神経発 達障害に与えるメカニズムの解明	高知大学	安光ラヴェル 香保子	4A
2020G662	鉄に吸蔵された金属イオンのドープ氷中での分布状態	東京工業大学	原田 誠	4A
2020G667	二酸化炭素の光還元に有効なチタン酸系光触媒における助触媒のXAFS分析	京都大学	山本 旭	12C, NW10A
2020G670	微小領域化学種解析による蛇紋岩中粘土鉱物に含まれるFe ²⁺ の還元作用による 脂肪族有機物生成過程の解明	東京大学	高橋 嘉夫	12C, 19A/B, 4A
2020G673	In situ XAFSおよびin situ XRDによるマイクロ波駆動固体反応の加速機構の 解明	東京工業大学	椿 俊太郎	9C, NW10A
2020G675	炭素貯留を担う土壌サブミクロ団粒内の有機-無機相互作用の解明	筑波大学	浅野 眞希	19A/B
2020G676	Mn, Fe, Co, Ni, Cu, Ru, Agポルフィリン-TiO ₂ 複合体のCO ₂ 光燃料化追跡	千葉大学	泉 康雄	9A, 9C, NW10A
2020G679	Understanding the Local Atomic Coordination in Unsegregated, Fast Crystallized Ga_xSb_{1-x} , for Phase Change Memory Application	Shiv Nadar University, INDIA	Aloke KANJILAL	NW10A
2020G683	3d遷移金属をドープしたアルミナの光学特性解明のためのXAFSによる ドープ原子の局所構造評価	産総研	小平 哲也	9A
2020G684*	Relating Cobalt States with Lewis Acid Sites in APOs by XAFS - to develop new NH3-SCR catalysts	Xiamen University, CHINA	Binghui Chen	15A1
4 4 4 4 4	v.			
4. 生命科学	乳酸菌の菌体表層に大量発現するグリセルアルデヒド-3-リン酸脱水素酵素			
2020G502	の糖鎖認識機構の解明	東海大学	米田 一成	5A
2020G507	ヒストンのクロトニル化リジンを認識するGAS41の構造基盤	横浜市立大学	小沼 剛	1A, 17A
2020G508	薬剤耐性タンパク質を標的とした細菌感染症治療薬の開発研究	名古屋大学	和知野 純一	5A
2020G510	ファージ由来のタンパク質が緑膿菌の外来遺伝子サイレンサーMvaTの機能 を阻害する構造基盤の解明	東京大学	野尻 秀昭	1A, 5A, NE3A, NW12A
2020G514	古細菌のメタン代謝を司るNi補酵素F430生合成酵素CfbAの基質となる金属 選択性の解明	埼玉大学	藤城 貴史	5A, 17A, NE3A, NW12A
2020G521*	産業利用酵素の構造解析	産総研	安武 義晃	1A, 17A
2020G524	ポリケタイド化合物の骨格形成とその修飾に関わる酵素の構造機能解析	東京大学	葛山 智久	5A
2020G525	ヌクレオシド系抗生物質の骨格形成および構造多様化の鍵となる酵素の構 造機能解析	東京大学	葛山 智久	5A
2020G527	β-1,2-グルカン関連酵素、結合タンパク質の構造解析	東京理科大学	中島 将博	5A, NW12A
2020G528	HTLV1感染阻害剤開発を目指したHTLV1エンベローブ蛋白質とニューロビリン1の構造解析	国立感染症研究所	楠 英樹	NW12A
2020G530	放射菌由来α-ガラクトシダーゼのガラクトース結合ドメインの構造機能研究	農研機構	藤本 瑞	5A, 17A, NE3A, NW12A
2020G531	キネシンCENP-Eと阻害剤との複合体の構造解明	東京理科大学	横山 英志	1A, 17A
2020G533	ポリケタイド合成酵素におけるドメイン間相互作用の解析	東京工業大学	宮永 顕正	5A, NW12A
2020G538	ペプチドグリカン生合成に関わる新奇リガーゼのX線結晶構造解析	富山大学	森田 洋行	1A
2020G559	植物由来の微小管結合タンパク質の結晶構造解析	横浜市立大学	林 郁子	1A, 5A, NE3A, NW12A
2020G563	希少糖生産に有用なエピメラーゼのX線結晶構造解析	東京大学	田之倉 優	1A, NE3A
2020G564	生体イメージング技術に係るタンパク質の構造生物学的研究	宇宙航空研究開発 機構	木平 清人	1A, 5A, 17A
2020G569*	翻訳調節因子の制御機構の解明	産総研	竹下 大二郎	1A, 5A, 17A

2020G570	アロステリックエフェクターを付加したヘモグロビンの分子変形過程の観 測	自治医科大学	佐藤 文菜	5A, NW12A
2020G573*	分子設計した光受容タンパク質の結晶構造解析	量研機構	安達 基泰	1A, 5A
2020G574	核移行受容体importin-alphaによるがんシグナル分子認識機構の構造基盤解明	名古屋大学	松浦 能行	1A
2020G576	CGL1およびSPL-1の糖複合体結晶構造解析	長崎大学	海野 英昭	5A, 17A, NE3A, NW12A
2020G580	細菌細胞壁構築と再構成を担う線毛タンパク質と細胞壁分解酵素のX線結 晶解析	香川大学	神鳥 成弘	5A
2020G590	感染症治療薬ならびに小児がん治療薬の開発に向けた標的タンパク質と阻害化合物の共結晶構造解析	千葉大学	星野 忠次	17A, NW12A
2020G591	結核菌糖脂質を認識するC型レクチン受容体群のリガンド認識および免疫 賦活化機構の構造基盤の解明	大阪大学	長江 雅倫	1A, 5A, 17A, NE3A, NW12A
2020G594	放線菌由来エステラーゼの光学選択活性の結晶学的解析	産総研	久保田 智巳	1A
2020G612	リボソームRNAを模倣した一塩基多型センサーのStructure-Based Design	上智大学	近藤 次郎	17A
2020G618	創薬標的タンパク質に対する新規共有結合型モチーフの開発とその相互作 用解析	昭和薬科大学	石田 寛明	5A
2020G629	ナノ構造体エンカプスリンへのタンパク質内包機構の解明	東京農工大学	野口 恵一	1A, 5A, 17A, NW12A
2020G633	PLP依存性D-スレオニンアルドラーゼの基質認識メカニズム	東邦大学	後藤 勝	5A
2020G642	バクテリアセルロース合成複合体のサプユニット、膜蛋白質BcsCのX線結 晶構造解析	北海道大学	于 健	1A
2020G648	クロマチン結合因子によるヌクレオソーム認識機構の解明	東京大学	胡桃坂 仁志	1A, 17A
2020G658	新規人工酵素変異体及び基質複合体等のX線結晶構造解析による酵素反応 機構の解明	信州大学	新井 亮一	1A, 5A, 17A, NE3A, NW12A
2020G681	ビブリオ菌由来鉄輸送タンパク質VmFbpAのX線結晶構造解析	東京大学	陸 鵬	NE3A

5. 生命科学	EII				
2020G506	GaN結晶の表面界面構造のX線CTR散乱法及びX線トポグラフ法による研究	日本女子大学	秋本	晃一	4C, 14B, 20B
2020G512	全方位からX線を入射可能なエッジ像2次元小角X線散乱測定用のゴムシート2軸延伸装置の開発	京都工芸繊維大学	櫻井	伸一	15A2
2020G515	有機溶媒/水/界面活性剤混合エマルション系での銀ナノ粒子形成過程の SAXS/WAXD解析	奈良女子大学	原田	雅史	6A
2020G516	天然ゴムならびに疑似天然ゴムの二軸延伸によるひずみ誘起結晶化性を最 大化させる手法の確立を目指した研究	京都工芸繊維大学	櫻井	伸一	15A2
2020G520	ポリL乳酸球晶内に閉じ込められたポリエチレングリコールの結晶化	京都工芸繊維大学	櫻井	伸一	6A
2020G536*	X線マイクロビームを活用した放射線誘発細胞競合現象の探索	量研機構	今岡	達彦	27B
2020G549*	放射光血管造影を用いた腫瘍新生血管の可視化	筑波技術大学	松下	昌之助	14C
2020G550*	放射光血管造影を用いた腎機能障害の評価	筑波技術大学	松下	昌之助	14C
2020G552	ポリマーブラシによる基板表面改質が与えるPS-b-P2VP薄膜の転移過程へ の影響	京都大学	小川	紘樹	15A2
2020G553*	アルカリ活性型シゾフィランの溶液構造解析と構造転移	東京薬科大学	松村	義隆	10C
2020G555	中性リン脂質・界面活性剤の作る膜やミセルに働く新しい力の起源	筑波大学	菱田	真史	10C
2020G556	X線干渉法を用いたX線ベクトル撮像の検討	九州シンクロトロン	米山	明男	14C
2020G557	熱散漫散乱とアレイ型APDを用いたns時間分解のフォノン状態計測法の開発	九州シンクロトロン	米山	明男	14C
2020G565	エックス線暗視野法における3ミクロン空間解像度への挑戦と医学試料へ の応用	総合科学研究機構	安藤	正海	14B
2020G566	X線偏光顕微鏡の拡張と応用	KEK物構研	平野	馨一	14B, 3C
2020G567	自己集合性ナノポリカテナンの動的性質の解析	千葉大学	矢貝	史樹	10C, 15A2
2020G578	X線CTを用いたクラスレートハイドレートの三次元定量解析と構造解析手 法の開発	産総研	竹谷	敏	14C
2020G579	SAXS/WAXS/DSC同時測定を用いた架橋脂質キュービック相の構造解析	奈良先端科学技術 大学院大学	尾本	賢一郎	10C
2020G583	X線暗視野法による乳房内乳管癌の3次元分布の解明	名古屋大学	砂口	尚輝	14B
2020G585	明視野X線トポグラフィーを用いたパワーデバイスのリアルタイム転位観 察	ファインセラミックスセ ンター	姚	k昭	14B, 3C
2020G602	ブロック共重合体/ホモポリマーブレンドが形成する新規ネットワーク型構造に関する研究	KEK物構研	高木	秀彰	6A, 10C
2020G603	X線天文衛星XRISM搭載X線CCDの軟X線のレスポンスの研究	東京理科大学	幸村	孝由	11A
2020G610	動的な架橋を有するイオン性エラストマーの変形下での内部構造変化と力 学特性の相関解明	岐阜大学	三輪	洋平	15A2
2020G637	Tender領域での透過異常小角散乱法の定量化とAl-Mg系多元合金の組織形成研究への応用	京都大学	奥田	浩司	6A, 11A, 13A/E
2020G645	高圧X線回折実験によるCoil-Rod-Coilブロック共重合体の形成するスメク チック相構造の解明	公立千歳科学技術 大学	大越	研人	6A
2020G647	マルチモーダルゾーンプレートX線顕微鏡の開発と応用	筑波大学	渡辺	紀生	3C
2020G649	In-situ Uniaxial Mechanical Strain-induced Morphological Evaluation of Elastomeric Topological Polymer Blends via Synchrotron X-ray Scattering	北海道大学	Brian Jiwon Ree		6A
2020G659	種結晶添加に伴うココアバター結晶の多形転移挙動の解明	広島大学	上野	聡	6A


2020G668	核酸搭載脂質ナノ粒子の動的構造変化測定	北海道大学	真栄城 正寿	15A2
2020G674	レクチンナノブロック機能性超分子複合体の創製とX線溶液散乱解析	信州大学	新井 亮一	10C
2020G678	肝臓の治療や再生への適用を目指したX線位相コントラスト法による肝微 小灌流状態の可視化	茨城県立医療大学	森 浩一	14C

課題名等は申請時のものです。*印は条件付き採択課題。

2020 年度前期からこれまでに採択された P 型課題

受理番号	課題名	所属	実験責任者	ビームライン
1. 電子物性	ŧ			
2019P013	レーザー照射により形成させた炭化ケイ素微粒子膜構造の研究	東北大学	西嶋 雅彦	11A, 11B
2019P017	軟X線吸収微細構造(XAFS)分光法による非晶質炭酸マグネシウムの局所構造	筑波大学	興野 純	11A
3. 化学·材	料			
2019P016	国内に産する浚渫土中の硫黄含有官能基の同定	北海道大学	菊池 亮佑	11B
2019P018	二酸化炭素還元に活性なジルコニア担持コバルト触媒のXAFS分析	北海道大学	Shrotri Abhijit	9A, 9C, 12C
2020P001	電気的中性層状ペロブスカイトの化学状態解析	東北大学	長谷川 拓哉	12C, NW10A

2020 年度第 1 期配分結果一覧

	Mon	Tue	Wed	Thu	Fri	Sat	
	6/29	6/30	7/1	7/2	7/3	7/4	7/5
	E	E	STOP	STOP	STOP	STOP	STOP
1A	2 2 190 🗯	20Y0 190 20G0					
2A/2B	19G645	20V001					
3A	19G056 清水	- 亮太					
3C	18G641 渡辺	1 紀生					
4A	18G575 高福	嘉夫					
4C	19G553 	尾裕則					
5A	1852 19G 19G0	18G 19G 19G5					
6A	19 20	20 20					
6C	19G087 杉山	和正					
7A	1982-003	19G028 20G054					
7C	19G591 手類	秦久					
вА	19G558 岩佑	和晃					
8B	調整						
9A	調整						
9C	調整						
10A	調整						
10C	20G0	18G564 矢貝 史樹					
11A							
11B	18G594 池本	弘之					
11D	20G013 小池	3 雅人					
12C	調整						
13A/13B	18G595 近藤 寬	1882-005 小海 億					
15A2	19G659 標井 仲一	調整					
16A	19S2-003 M	20L001 20Y004					
17A	19G 19G 20C20	3 開整					
18B	調整						
18C	調整						
19A/19B	18S1-001 高	20Y016 18S1-00					
20A	調整						
20B	20PF-07 若 4	* 大佑					
27A	20G019 横名	明値					
27B	18G568 松瀬	18G574 波部 創					
	STOP	STOP	STOP	STOP	STOP	STOP	STOP
SPF	調整	0.01	0101	0101	0101	0101	0101