D111 型装置を用いた高温高圧変形実験:固体地球深部の流動変形の理解を目指して

西原遊¹, 辻野典秀², 久保友明³, 山崎大輔², 土居峻太¹, 今村公裕⁴, 芳野極²

¹愛媛大学地球深部ダイナミクス研究センター,²岡山大学惑星物質研究所,³九州大学大学院理学研究院,

4九州大学大学院理学府

High-Pressure and -Temperature Deformation Experiments using D111-type apparatus: Towards Understanding of Rheology of Deep Earth Materials

Yu NISHIHARA¹, Noriyoshi TSUJINO², Tomoaki KUBO³, Daisuke YAMAZAKI², Shunta DOI¹, Masahiro IMAMURA⁴, Takashi YOSHINO² ¹Geodynamics Research Center, Ehime University, ²Institute for Planetary Materials, Okayama University ³Faculty of Science, Kyushu University, ⁴Graduate School of Science, Kyushu University

Abstract

DT-Cup 装置を大型化した高圧変形実験装置である D111 型装置が KEK, PF-AR, NE7A に導入された。この装置では, 従来難しかった最高約 30 GPa の高圧下でのよく制御された変形実験が可能であり,放射光X線と組み合わせることで同 時に歪と応力の測定も可能である。この装置を使って,オリビン - スピネル相転移と変形の相互作用,ブリッジマナイト とポストスピネルのレオロジー,六方最密構造鉄のレオロジーなどの地球深部物質の流動変形の性質が調べられている。

1. はじめに

地球のマントルは大部分が固体岩石であるが,1000℃ を超える高い温度のため地質学的な長い時間の中では流 体として振舞っている(Fig. 1)。そのような地球深部での 固体の変形と流動の性質の理解には,地球深部に相当する 高温高圧下で実際に地球の物質を変形する実験的研究が 重要な役割を担っている。高圧力下の変形実験には固体 圧またはガス圧の変形試験機が用いられてきたが,20世 紀から用いられてきた試験機のうちで比較的高い圧力下 の実験が可能な Griggs 型固体圧試験機での発生圧力は約3 GPa に限られていた。これは地球マントルの最上部に相当 する深さ約100 km までしか再現することができないこと を意味する。21世紀に入って以降,地球のより深部での 物性を探るための高圧変形実験装置が相次いで開発され た(D-DIA 装置 [1],回転ドリッカマー装置 [2],DT-Cup 装置 [3])。これらの装置によってより高圧下での固体の変

Figure 1 Schematic illustration of mantel convection and rock deformation in the Earth's interior.

形と流動の性質を実験的に調べることが出来るようになっ てきたものの,試料の大きさや形状が限定される問題から 精密な実験が可能な圧力条件は10数 GPa 程度に限られて いた。これでは,体積の上で地球の半分以上を占める下部 マントル(深さ 660 km以上)の物質の詳しい性質につい て調べることが困難である。

このような状況のなか,我々は新学術領域研究「核一マ ントルの相互作用と共進化~統合的地球深部科学の創成 ~」の一環として,2017年3月に高エネルギー加速器研 究機構,PF-AR,ビームラインNE7AにD111型装置のシ ステムを構築した。そして,この実験システムを用いてマ ントル遷移層,下部マントル,内核といった地球深部の物 質の物質のレオロジー(変形と流動の性質)を明らかにし つつある。本論文では,D111型装置を用いて進められて いる地球深部物質のレオロジーの研究の現状を紹介する。 なお本論文の内容は西原ほか[4]を再構成したものであ り,掲載にあたっては著作権者の日本高圧力学会の許諾を 得ている。

2. D111 型装置を用いた高温高圧変形実験

D111 型装置の写真と概念図を Fig. 2 に示す。上下に分 割されるガイドブロック (guide block) には上下それぞ れに差動ラム (D-ram) が内蔵されており,これは油圧に より駆動することができる。一段目アンビル (first-stage anvil) は 3 個ずつ組み合わされ上下ガイドブロック内に設 置されているが,その中心部に六角柱型の空間が設けら れ,この空間に 3 本のピストン (piston) がはめ込まれて

Figure 2 (a) A photograph of D111-type apparatus installed at KEK. (b) A schematic cross section of pressure medium and anvils in D111-type guide block (modified after ref. [4]).

いる [5]。ガイドブロック全体の中心部には,8個の立方 体二段目アンビル (second-stage anvil) と八面体形状の圧 力媒体 (pressure medium)を組み合わせたアセンブリーを そのまま設置し実験を行う。(Mg,Co)O などのセラミック ス半焼結体の圧力媒体内部には、中心部に試料を,試料上 下には硬い Al₂O₃ ピストンを配置する。以上のような設計 により、メインラム荷重を印加し圧力媒体およびその内部 の試料に圧力をかけた状態で差動ラムを前進(または後 退)させ、ピストンと上下二段目アンビルを通じて圧力媒 体ひいてはその内部の試料を変形することができる。この ようなタイプの変形実験装置はもともと Hunt *et al.* [3] に よって開発されたもので、D111 型装置はそれを大型化し たものにあたる。なお、装置名の「D111」は、変形を意 味する Deformation の頭文字と圧縮・変形方向が「111方向」 であることに由来している。

ガイドブロックの最高差動ラム荷重は上下各 314 ff であ る。これを PF-AR のビームライン NE7A に設置されてい る MAX-III プレスと組み合わせて用いることで,最高メ インラム荷重 700 ff での実験が可能な「D111 型装置」が 構成される。Hunt *et al.* [3] の装置では差動ラム荷重とメイ ンラム荷重が最高でそれぞれ 62,413 ff しかなかったため, 実験可能な圧力が最高 18 GPa にとどまっていた。大型化 された D111 型装置では発生可能な荷重が大きく拡大され ており,最高約 30 GPa の高圧下での変形実験を実現でき る。これは従来困難だった地球下部マントルの条件(圧力 >23 GPa) での変形実験が可能になることを意味する。

高温高圧変形その場観察実験では、まず試料を含む圧力 媒体にメインラム荷重を印加し高圧力を発生させる。目的 圧力到達後に、圧力媒体に内蔵した発熱体により試料を加 熱し、上下差動ラムを一定速度で前進させることにより 高温高圧下の試料の圧縮変形を行う。D111型装置を用い た高圧変形実験その場観察システムの概念図を Fig. 3 に示 す。50-60 keV の単色X線を圧力媒体中の試料に照射しラ ジオグラフ像および二次元X線回折パターンを収集する。 ラジオグラフ像は YAG または GAGG 蛍光体と CCD また は CMOS カメラを用い、二次元X線回折パターンはフラ

Figure 3 A schematic illustration of experimental system at a beamline NE7A, PF-AR, KEK (modified after ref. [4]).

ットパネルセンサーを用いて撮影する。通常は二段目アン ビルには超硬合金が用いられるが、受光側の二個のアンビ ルが回折X線を遮ってしまう。このため受光側二段目アン ビルには、cBN などのX線を透過する材料でできたアン ビルまたは円錐形の掘り込みを施した超硬合金アンビルを 用いて、その場での二次元X線回折測定を可能にしている。 このようにして得られたラジオグラフ像から試料の歪を、 また二次元回折パターンから圧力と差応力を決定する。

3.オリビン-スピネル相転移と変形の相互作用

固体地球で駆動するプレートテクトニクス型のマント ル対流を理解する一つの鍵が、マントル遷移層(深さ約 400-700 km, 圧力約 14-23 GPa)を通過する沈み込んだ海 洋プレート(遷移層スラブ)の挙動である。遷移層スラブ

Figure 4 Pressure and temperature conditions of experiments using D111-type apparatus at KEK (modified after ref. [4]). Green circles are deformation conditions of bridgmanite and post-spinel. Blue squares and lines are deformation conditions of hcp iron and phase boundaries in iron [10], respectively. Red and black circles are pressure-temperature paths in four series of the olivine-ringwoodite transformation experiments in shear with and without annealing prior to the transformation, respectively (solid symbols indicate ringwoodite appeared). Black lines are phase boundaries in Mg₂SiO₄ [11-14]. TEL denotes truncation edge length of the second-stage anvils in mm.

(a) Before deformation (b) After deformation $\varepsilon = 28.9\%$ Al_2O_3 X-ray window Brd T_1 Al_2O_3 Al_2O_3

Figure 6 The X-ray radiographs at ~24-27 GPa taken (a) before and (b) after deformation (modified after ref. [4]). The maximum strain reached about 30%.

Figure 5 Changes of stress and strain during the olivine–ringwoodite transformation in shear at ~18 GPa with increasing temperature (modified after ref. [4]). The pistons were advanced with a constant rate of 200 μ m h⁻¹.

は硬い下部マントルから抵抗を受けて深発地震を起こすと ともに大変形して折れ曲がる場合が多い。それには遷移層 で起こるオリビン-スピネル(ウォズレアイトおよびリン グウッダイト)相転移が深く関与しているとされている。 特にスラブの低温下では相転移が過剰圧状態で非平衡に進 行するため細粒化が起こりやすく,それが大きな変形強度 の低下を引き起こすことが指摘されている(例えば[6])。 その実証には非平衡相転移と塑性流動が相互作用する現象 を解明する必要があるが,D111型装置の開発によりその 直接的な実験研究が可能になった。

オリビンの焼結多結晶体を出発物質として, 圧力 15-25 GPa で 600°C から 1200°C 付近へ昇温させながら剪断変形 実験を行い, オリビンーリングウッダイト相転移の進行と 変形挙動をその場観察した (Fig. 4)。圧力 18 GPa 付近で 得られた結果を Fig. 5 に示す。上下差動ラムの変位速度は 一定にしているが剪断歪速度は一定ではなく, 相転移の開 始に同期して顕著に上昇している。そのときの差応力は昇 温の効果もあるが, 特に相転移の進行とともに顕著に低下 している。この相転移にともなう試料の変形強度の大きな 低下は,より過剰圧の大きい圧力 22 GPa 付近でより顕著 であった。このようにマントル遷移層圧力下で相転移と変 形の相互作用をその場観察できている。将来的には, 相転 移にともなって時間変化する岩石のレオロジーをより高い 時間・空間分解能でその場観察することを目指したい。

4. ブリッジマナイトとポストスピネルのレオロジー

地球下部マントルは約 70 vol.% を占めるブリッジマナ イト¹¹ (以下 Brg) と約 20 vol.% を占めるフェロペリクレ

ース²⁾(以下 Fp)から主に構成されている(パイロライト モデル)。下部マントルは上部マントル・遷移層に比べて 高粘性率であるだけでなく、下部マントル中の粘性率は深 さとともに大きく上下することが地球物理学的観測から報 告されている。この深さに伴う粘性率変化を理解するた めには Brg 単相の粘性率の知見が重要である。Brg 単相の 粘性率を明らかにするため, Brg 多結晶焼結体を用いて高 温高圧一軸変形実験中のその場応力-歪測定を行った。変 形条件は温度 1200-1400°C, 圧力 ~24-27 GPa, 歪速度 2.5× 10⁻⁶-4×10⁻⁵ s⁻¹ である (Fig. 4)。Fig. 6 に示すように,最 大歪量は約30%に達した。一回の変形実験中に歪速度お よび温度を変えた測定により応力依存性・温度依存性を精 密に決定した。その結果, Brg 単相の応力指数は3と求まり, 本研究の実験条件では高温型べき乗則(転位)クリープが 支配的であることが明らかとなった。このメカニズムが支 配的であることは温度依存性の結果からも支持される。ま た、同様な一軸変形実験に基づいた報告のあるマントル遷 移層主要鉱物のウォズレアイト・リングウッダイトと比べ て, Brg 単相は高粘性率を持つことが明らかになった。

Brg は Fp に比べ圧倒的に高い粘性率を持つことから, 塑性変形の進行とともに硬い Brg に代わって軟らかい Fp が下部マントルの粘性率を支配するようになり下部マント ル全体の粘性率の低下が起きる可能性が指摘されている。 この可能性を検証するため, Brg: Fp のモル比が1:1,体 積比が約2:1となる混合物(ポストスピネル)を用いた 高温高圧剪断変形実験を行った。回転ドリッカマー装置を 用いて剪断変形実験を行なった先行研究[7]では,一定歪 速度の変形において歪量γが約0.3以上で Brg にかかる応 力の明らかな低下が報告されている。その一方で,我々の 実験では最大歪量γが約1に達しても Brg の明らかな応力 低下は観察されない。今後さらに実験を行うことで,どの ような条件下でどちらの鉱物が粘性率を支配するのかを明 らかにしたい。

¹⁾ ペロフスカイト構造で (Mg,Fe)SiO₃ の化学組成を持つ鉱物 ²⁾ 岩塩構造で (Mg,Fe)O の化学組成を持つ鉱物

5.六方最密構造(hcp)鉄のレオロジー

地球の中心に位置する固体金属の内核には特異な地震波 異方性が存在する。これは内核における何らかの物質移動 現象によって生み出されていると考えられる。そして、こ の物質移動現象がどのような駆動力によるかは、内核冷却 速度と内核粘性率の値に依存している [8]。このため内核 を構成する hcp 鉄の流動変形の力学的性質を決定し内核の 物質輸送の実態に迫ることを目指している。

鉄の焼結多結晶体を用いて、一定歪速度における一軸圧 縮変形実験を行った。変形の条件は温度 450-600℃、圧力 16.3-22.6 GPa, 歪速度 1.5×10⁻⁶-8.8×10⁻⁵ s⁻¹である (Fig. 4)。 変形中の応力の変化を様々な条件で測定し (Fig. 7)、定常 流動応力が決定された。結果から総合的に判断すると、約 500℃以上の高温とそれ以下の低温ではそれぞれ異なる変 形機構が卓越していることが示唆される。高温機構は応力 指数がおよそ4程度であり、格子拡散が律速する高温型べ き乗則クリープであると考えられる。一方で、低温機構は 転位芯拡散が律速する低温型べき乗則クリープであると考 えられ、また約 400℃以下では顕著なべき乗則の崩壊を 伴っている。内核条件でべき乗則クリープが支配的変形機 構であると仮定し、融点規格化に基づいた見積もりを行う と、内核条件での hcp 鉄の粘性率は約 10¹⁸ Pa·s 以上の高い 値を持つことが示唆される。

6. おわりに

最高圧力 27 GPa, 最高温度 1400℃ での定量的な応力・ 歪測定をともなった変形実験が D111 型装置を用いて実現 されている。これにより従来の装置では調べることが困難 だった高温高圧下の地球深部物質のレオロジーが明らかに されつつある。今後の技術開発によってさらに高い圧力下 の変形実験が実現され, D"層の地震波速度異方性の成因 (例えば [9])をはじめとするマントル深部のレオロジーに 関連した問題が解き明かされることが期待される。

Figure 7 Plots of stress versus elapsed time in the deformation experiments of hcp iron at temperature of 550, 500, and 450°C and pressure of 16.5-16.3 GPa with strain rates in a range of $1.7-2.9 \times 10^{-5} \text{ s}^{-1}$ (modified after ref. [4]). Stress values were determined from the four diffraction peaks of hcp iron (1010, 0002, 1011, and 1012).

7. 謝辞

D111 型装置の製作および立ち上げ作業でご協力いただ いた Simon Hunt 博士 (University of Manchester), David Dobson 教授(University College London), 大内智博准教 授(愛媛大学),山本周平氏(C&Tファクトリー),鈴 木昭夫准教授(東北大学), 亀卦川卓美博士, 若林大佑 助教,船守展正教授(KEK),Fang Xu博士(Sorbonne Université)に深く感謝します。本稿で紹介した研究でご 支援をいただいた松影香子教授(帝京科学大学), 坪川祐 美子助教(九州大学), Andrew Thomson 講師(University College London),森悠一郎氏(東京大学)に謝意を表し ます。この研究における実験は、KEK 放射光実験課題 2016G016, 2016G598, 2017PF-02, 2017PF-07, 2018G024, 2018G059, 2018G591 によって行われました。この研究は 科学研究費補助金,新学術領域研究(15H05827),基盤研 究(B)(15H03749),基盤研究(A)(19H00723),基盤研究 (S) (18H05232) を受けて行われました。

引用文献

- Y. Wang, W.B. Durham, I.C. Getting, and D.J. Weidner, Rev. Sci. Instrm. 74, 3002 (2003).
- [2] D. Yamazaki and S. Karato, Rev. Sci. Instrm. 72, 4207 (2001).
- [3] S.A. Hunt, D.J. Weidner, R.J. McCormack, M.L. Whitaker, E. Bailey, L. Li, M.T. Vaughan, and D.P. Dobson, Rev. Sci. Instrm. 85, 085103 (2014).
- [4] 西原遊, 辻野典秀, 久保友明, 山崎大輔, 土居峻太, 今村公裕, 芳野極, 高圧力の科学と技術 30, 78 (2020).
- [5] S.A. Hunt and D.P. Dobson, Rev. Sci. Instrm. 88, 126106 (2017).
- [6] T. Kubo, S. Kaneshima, Y. Torii, and S. Yoshioka, Earth Planet. Sci. Lett. 278, 12 (2009).
- [7] J. Girard, G. Amulele, R. Farla, A. Mohiuddin, and S. Karato, Nature 351, 144 (2016).
- [8] M. Lasbleis and R. Deguen, Phys. Earth Planet. Inter. 247, 80 (2015).
- [9] A. Tommasi, A. Goryaeva, P. Carrez, P. Cordier, and D. Mainprice, Earth Planet. Sci. Lett. 492, 35 (2018).
- [10] F.P. Bundy, J. Appl. Phys. 36, 616 (1965).
- H. Morishima, T. Kato, M. Suto, E. Ohtani, S. Urakawa,
 W. Utsumi, O. Shimomura, and T. Kikegawa, Science 265, 1202 (1994).
- [12] A. Suzuki, E. Ohtani, H. Morishima, T. Kubo, Y. Kanbe, T. Kondo, T. Okada, H. Terasaki, T. Kato, and T. Kikegawa, Geophys. Res. Lett. 27, 803 (2000).
- T. Irifune, N. Nishiyama, K. Kuroda, T. Inoue, M. Isshiki,
 W. Utsumi, K. Funakoshi, S. Urakawa, T. Uchida, T. Katsura, and O. Ohtaka, Science 279, 1698 (1998).
- [14] T. Tsuchiya, J. Geophys. Res. 108, 10.1029/2003JB002446 (2003).

(原稿受付日:2020年8月31日)

著者紹介

西原遊 Yu NISHIHARA

愛媛大学地球深部ダイナミクス研究
センター 准教授
〒 790-8577 愛媛県松山市文京町 2-5
TEL: 089-927-8150
e-mail: yunishi@sci.ehime-u.ac.jp
略歴: 2003 年東京工業大学大学院理工

学研究科博士課程修了博士(理学),2003-2004年 Yale大 学ポスドク研究員,2004年日本学術振興会特別研究員 PD (東京大学物性研究所),2004-2008年東京工業大学大学院 理工学研究科地球惑星科学専攻助手(21世紀 COE)・助教 (21世紀 COE),2008-2013年愛媛大学上級研究員センタ ー上級研究員,2013年より現職。

最近の研究:地球深部の輸送特性の実験的研究,熱電対起 電力の圧力効果。

辻野典秀 Noriyoshi TSUJINO 岡山大学惑星物質研究所 助教 e-mail: tsujino@okayama-u.ac.jp

久保友明 Tomoaki KUBO 九州大学大学院理学研究院 教授 e-mail: kubotomo@geo.kyushu-u.ac.jp

山崎大輔 Daisuke YAMAZAKI 岡山大学惑星物質研究所 准教授 e-mail: dy@misasa.okayama-u.ac.jp

土居峻太 Shunta DOI 愛媛大学地球深部ダイナミクス研究センター 修士課程 (研究当時)

今村公裕 Masahiro IMAMURA 九州大学大学院理学府 博士課程(研究当時)

芳野極 Takashi YOSHINO 岡山大学惑星物質研究所 教授 e-mail: tyoshino@misasa.okayama-u.ac.jp