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0 Introduction 

a It is not a simple task to programmatically determine a radius of gyration and other 

parameters in Guinier analysis from experiment data in SAXS. 

b This document describes how we tried to solve the problem in a sufficiently simple way and 

implement it into a maintainable set of programs. 

c By “simple”, we mean here mainly that it is composed of a simple combination of well-

established methods with fewer customizations. 

 

1 Understanding of the Task 

a Guinier Plot, as shown in , is one of the most fundamental steps in the analysis of the SAXS 

experiment data. 

 

b I(0) and Rg Estimation 

c Quality Assessment 

 

2 Goal of the Program 

a The goal of the program is set to establish a good balance of the sub-goals suggested by the 

following key words. 

 accuracy of the estimation of radius of gyrations, etc. 

 usable quality indicator on the input data 

 stability and robustness 

 feasible calculation speed 
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3 Solution Scheme 

3.1 From Guinier-Porod to Guinier 

a Our solution scheme mainly consists of two parts. The first part is the preliminary fitting to 

the Guinier-Porod model, followed by Guinier analysis based on the fitting results. 

b From the nature of two-region Guinier-Porod model, the boundary of the two basic regions 

can be calculated simply from the fitting parameters, namely 𝑅𝑔 (radius of gyration) and 𝑑 

(Porod exponent). See appendices A.5 for details. 

c If a set of data fits to the model, then we can use the calculated boundary as the approximate 

end point of the Guinier interval. 

d Otherwise, the set of data may be of too low quality with large dispersion, or it may be 

suspected to have some kind of anomalies such as aggregation or inter-particle interference. 

e In short, we can get useful information from Guinier-Porod model fitting both in success or 

in failure.1 

f Since our goal here is the automation of Guinier analysis, we will finally stick to the pure 

Guinier approximation, which is implemented as a linear regression of a certain selected 

interval. 

 

3.2 Why this scheme is simple and stable 

a If you have determined a Guinier region interval, the remaining work is, basically, a linear 

regression and routine calculations. 

b So, the difficulty of the problem lies rather in the determination of an appropriate interval. 

c Determining an optimal interval from the shape information of the curve is a complex process 

consisting of several self-made steps such as smoothing the measurement data curve, 

computing its derivatives and curvatures, etc. 

d So, it is error-prone even when the condition of the data is relatively good and almost 

impossible when it is bad. 

e On the other hand, the above mentioned scheme begins with a well-established single step 

― the least squares fitting to a relatively simple data model ― and is die-hard in the 

approximate determination of the interval. In addition, it rarely results in completely wrong 

estimations. (See A.5 f on page 20 for the risk of wrong estimations) 

f So, it is easier to handle uniformly from bad to good, corresponding to the quality of the data. 

g The uniformity or continuity of the process to data quality is essential for the stable 

calculation of the quality index, especially for judging bad when it is bad.2 

  

                                                   
1 Even when the fit for the whole interval fails, it can be fitted for a sufficiently narrower interval and we can get 

information from the fit as well. 

 
2 𝑅𝑔 estimation can get really bad when the data is really bad. Nevertheless, it is better than nothing to give some 

information as long as it is given correctly marked bad with the quality indicator index. What must be avoided are 

the cases where bad results are given with relatively high quality scores. 
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4 Formulation of the Optimizations 

a In this chapter, we will describe the implemented optimizations conceptually, leaving the 

precise description or implementation details to the later chapters. 

 

4.1 Guinier Porod Fitting 

a Although the Guinier Law is observed in logarithmic intensity versus scattering variable 

squared (𝑞2) scaling, we let the program perform the Guinier-Porod model fitting in the 

simple plain scaling as follows without logarithm and q squaring. 

 

minimize:  𝑆(𝐺, 𝑅𝑔, 𝑑) = ∑
(𝑦𝑖 − 𝐹𝐺,𝑅𝑔,𝑑(𝑥𝑖))

2

𝑒𝑖
2

𝑁

𝑖=1

, 

where 𝑁 ∶ number of obsevations,  

𝑥𝑖 ∶ 𝑖th value of scattering variable (𝑞) , 

 𝑦𝑖 ∶ average intensity at 𝑥𝑖 , 

 𝑒𝑖 ∶ standard error of 𝑦𝑖 , 

𝐹𝐺,𝑅𝑔,𝑑 ∶ value of the model with 𝐺, 𝑅𝑔 and 𝑑, 

𝐺 ∶ scale factor of the model, 

𝑅𝑔: radius of gyration, 

𝑑 ∶ Porod exponent 

(4-1) 

 

b Note that, in this formulation, the least squares optimization evaluates the deviations in the 

lower q ranges quite stronger because the intensity is exponentially higher in the region. 

c So, this plain scaling, rather than Guinier Plot scaling, is considered more suitable for this 

program’s purpose in the following sense. 

d Because the ultimate goal of the program is Guinier analysis, it is not appropriate to be 

overly affected by the shape information from the Porod region. 

e In other words, we want it to be fitted roughly as well for those data that are considered to 

fit badly to the Guinier-Porod model. Data from samples in the form of surface fractals are 

said to be such cases. See Appendixes A.5 and C for details. 

f The range (or interval) in the q-axis for the fitting is initially determined after removing the 

head anomalies. See Section 6.1 for details. 

g When the fit is too bad, the program retries fitting after narrowing the interval in several 

ways. See Section 6.2 for details. 
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4.2 Guinier Interval Determination 

a After Guinier-Porod fitting we have an approximate knowledge of the boundary of the two 

basic regions. 

b Since the automatically calculated boundary 𝑄1 tends to exceed the Guinier interval, an 

approximate value of our wanted upper boundary is basically determined by the 𝑞𝑅𝑔 < 1.3 

constraint. 

c I.e., we can get an approximate value �̂� of the upper boundary from the following formula. 

 

�̂� = min (
1.3

𝑅𝑔
, 𝑄1), 

where 𝑄1 =
1

𝑅𝑔
(
3𝑑

2
)
1/2

. 

(4-2) 

 

d And the value tends to be determined depending only on 𝑅𝑔, since 𝑞 = 1.3/𝑅𝑔 is often smaller 

than 𝑄1. See Appendixes A.5 and C for details. 

e The lower boundary is determined approximately by the following optimization consisting of 

three factors. 

 

minimize:  𝐷(𝑞1, 𝑞2) = 𝑤1(𝐹𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦)
2
+ 𝑤2(𝐹𝑠𝑖𝑧𝑒)

2 + 𝑤3(𝐹𝑠𝑡𝑎𝑟𝑡)
2, 

where 

𝐹𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = (𝑅𝑔(𝑞1, 𝑞2) − 𝑅�̂�)
2
, 

𝐹𝑠𝑖𝑧𝑒 =
1

(𝑞2 − 𝑞1)
2, 

𝐹𝑠𝑡𝑎𝑟𝑡 = 𝑞1
2 

𝑞1 ∶ the lower boundary of Guinier interval, 

𝑞2 ∶ the upper boundary not exceeding 𝑄
1
 determined by formula (4-2), 

 𝑅𝑔(𝑞1, 𝑞2): 𝑅𝑔 determined approximately on the interval [𝑞1, 𝑞2], 

𝑅�̂� ∶ Gunier-Porod fitted 𝑅𝑔 , 

 𝑤𝑖 ∶ weights for evaluation. 

(4-3) 

 

f We said “approximately” above because the real implementation is more complex to cope 

with the dispersion of the experiment data. See 6.5 for 𝐹𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 details. 

g The real factors and weights in implementation need to be adjusted considering various 

situations although not specified here. 
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4.3 Rg Estimation 

a After the determination of the Gunier interval, 𝑅𝑔 calculation is a relatively simple task of 

weighted linear regression formulated as below. 

 

minimize:  𝐸(𝐴, 𝐵) = ∑
(𝑌𝑖 − 𝐿𝐴,𝐵(𝑋𝑖))

2

𝑒𝑖
2

𝑁

𝑖=1

, 

where 

𝑁 ∶ number of obsevations in the interval,  

𝑋𝑖 = 𝑥𝑖
2 ∶ 𝑖th value of scattering variable (𝑞) squared, 

 𝑌𝑖 = log(𝑦𝑖) : natural logarithmic average intensity at 𝑥𝑖 , 

 𝑒𝑖 ∶ standard error of 𝑦𝑖 , 

𝐿𝐴,𝐵(𝑋𝑖) = 𝐴 + 𝐵𝑋𝑖. 

(4-4) 

 

b And the corresponding  𝐼0  and 𝑅𝑔  are calculated respectively from the intercept 𝐴 and the 

slope 𝐵 as follows. 

 

𝐼0 = 𝑒𝑥𝑝 (𝐴). (4-5) 

𝑅𝑔 = (−3𝐵)1/2. (4-6) 

 

c Since the 𝑞𝑅𝑔 < 1.3 constraint had been only approximately satisfied in the previous stage 

and the linear regression does not consider the constraint, the final 𝑅𝑔  must be slightly 

modified by re-calculating after adjusting the interval so as to satisfy the constraint. See 6.6 

for details. 
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5 Quality Index Design 

5.1 Quality Factors and their Proportions 

a In order to achieve the usability mentioned at the early part of the document, we designed 

the quality index as the sum of those quality factors whose scoring proportions are listed in 

Tab. 5-1. 

 

Tab. 5-1 Quality Factors and their Proportions 

No Factor Name Proportion Description 

1 intensity score 0.1 Higher if the GP-fitted 𝐼0 is higher. 

2 positive score 0.1 Higher if the data contains less negative values. 

3 QP-fitting cover ratio 0.1 Higher q-range that fits well to GP model is wider. 

4 QP-fitting score 0.0 Used internally, but weighted zero for itself. 

5 𝑅𝑔 stdev score 0.2 Higher if the 𝑅𝑔 stdev is smaller. 

6 fit consistency 0.4 Higher if the estimated 𝑅𝑔 is closer to the GP-fitted 𝑅𝑔. 

7 𝑞𝑅𝑔 range score 0.1 Higher if the minimum 𝑞𝑅𝑔 is smaller. 

 

b The listing order of factors above is intended to represent the order of logical dependence 

among them, although the actual computation is slightly different. 

c The value of each factor is defined to fall in the interval between zero and one, letting it to 

mean that the greater the value the better the quality. 

d Explanation for each factor will be given in the following sections. 
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5.2 Intensity Score 

a Until the intensity of the x-ray beam attains a certain level, the contrast is not enough to 

distinguish the sample and the buffer, and tends to result in a very low quality of data. 

b In this sense, this score is the most fundamental. 

c We chose to evaluate this score from the 𝐼0 obtained in the preliminary GP-fitting. 

d It would have been more desirable if we could calculate it from the more primitive value such 

as the intensity itself. However, that was found to be inappropriate because it is observed 

that there are some cases where weaker intensities produce better contrasts than stronger 

intensities. 

e The intensity score is calculated linearly, flattening the values outside of the evaluation 

range, according to Tab. 5-1 below. 

f The boundary values at both ends were chosen so that the ignorance of differences in less or 

grater values than those is insignificant in the primitive comparison of the qualities. 

 

Tab. 5-2  Definition of Intensity Score 

Range of 𝐼0 Intensity Score 

𝐼0 < 0.0005 0 

0.0005 ≤ 𝐼0 ≤ 0.002 (𝐼0 − 0.0005)/(0.002 − 0.00005) 

𝐼0 > 0.002 1 

 

5.3 Positive Score 

a Negative intensity values result from subtraction in low contrast, and they are inconvenient 

to logarithmic treatment employed in the analysis. 

b Therefore, they are counted to get their counterpart proportion to the whole data before 

removing to make the rest available in the later stages. 

c The positive score is defined from the proportion of positive intensities as follows. 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑐𝑜𝑟𝑒 = 2(max(0.5, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜) − 0.5), 

where 

𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠
. 
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5.4 GP-fitting Cover Ratio 

a For brevity, we assume here that method to distinguish whether the fit is acceptable or not 

is somehow known. See 6.2 for details 

b If the whole data does not fit well to the Guinier-Porod model, the program tries to find a 

narrower interval within which the data fits well to the model. 

c In this way, there always exists an interval where the fit is acceptable. 

d Therefore, the GP-fitting cover ratio is defined as follows. 

𝐺𝑃-𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑐𝑜𝑣𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙-𝑓𝑖𝑡𝑡𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠
. 

 

5.5 GP-fitting Score 

a This score represents how well the set of data fits the model. 

b It is defined as follows based on the AIC ― Akaike Information Criterion ― of the fit result. 

𝐺𝑃-𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 =
𝑎𝑖𝑐 𝑠𝑐𝑜𝑟𝑒

10 − 8
, 

𝑎𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 = min(10,max(8, ln(−𝑎𝑖𝑐)) ), 

where ln(−𝑎𝑖𝑐) 𝑖𝑠 𝑖𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑒𝑑 𝑎𝑠 𝑧𝑒𝑟𝑜 𝑤ℎ𝑒𝑛 𝑎𝑖𝑐 > 0 

c The range of the 𝑎𝑖𝑐 𝑠𝑐𝑜𝑟𝑒 between 8 and 10 was chosen from the observation of actual data 

so that the score adequately represent the quality of the model fitting. 

 

5.6 Rg Stdev Score 

a This score represents the reliability of the estimated 𝑅𝑔 in the Guinier interval. 

b It is defined as follows based on the stdev ratio of the estimated 𝑅𝑔 in the interval. 

 

𝑅𝑔 𝑠𝑡𝑑𝑒𝑣 𝑠𝑐𝑜𝑟𝑒 = exp(−50 ×
𝑅𝑔 𝑠𝑡𝑑𝑒𝑣

𝑅𝑔
) 

 

c The constant 50 was chosen so that the value of the score varies between zero and one 

roughly reflecting the human evaluation of the actual data. 
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5.7 Fit Consistency 

a This score represents the degree of consistency between the values of 𝑅𝑔 ’s from the Guinier-

Porod fitting and the final evaluation in the Guinier interval. 

b It comes after the previous two factors because you cannot tell the consistency correctly 

unless both of the 𝑅𝑔’s are reliable. 

c In other words, there is a risk that the score may become accidentally high when both of 

them get close together in a coincidence, and we have to avoid such cases. 

d The score is defined as a product of the three factors as follows. 

 

𝑓𝑖𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 𝑟𝑎𝑤 𝑓𝑖𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 × 𝐺𝑃-𝑓𝑖𝑡𝑡𝑖𝑛𝑔 𝑠𝑐𝑜𝑟𝑒 × 𝑅𝑔 𝑠𝑡𝑑𝑒𝑣 𝑠𝑐𝑜𝑟𝑒, 

where 

𝑟𝑎𝑤 𝑓𝑖𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 0.4 × 𝑏𝑎𝑠𝑒 𝑠𝑐𝑜𝑟𝑒 + 0.6 × 𝑏𝑜𝑛𝑢𝑠 𝑠𝑐𝑜𝑟𝑒 

base score = 𝑑𝑖𝑓𝑓 𝑠𝑐𝑜𝑟𝑒 

𝑏𝑜𝑛𝑢𝑠 𝑠𝑐𝑜𝑟𝑒 = max (0, 𝑑𝑖𝑓𝑓 𝑠𝑐𝑜𝑟𝑒 − 0.9 ) 

𝑑𝑖𝑓𝑓 𝑠𝑐𝑜𝑟𝑒 = max(0, 1 −
abs(𝑒𝑠𝑡𝑒𝑚𝑎𝑡𝑒𝑑 𝑅𝑔 − 𝐺𝑃-𝑓𝑖𝑡𝑡𝑒𝑑 𝑅𝑔)

𝐺𝑃-𝑓𝑖𝑡𝑡𝑒𝑑 𝑅𝑔
) 

 

e Note that the “𝑟𝑎𝑤 𝑓𝑖𝑡 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦” is defined so as to amplify the differences in cases when 

the “𝑑𝑖𝑓𝑓 𝑠𝑐𝑜𝑟𝑒” is higher than 0.9 (, i.e., the difference ratio is less than 0.1). 
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5.8 qRg Range Score 

a The maximum value of 𝑞𝑅𝑔  in the Guinier region is usually limited by the 𝑞𝑅𝑔 < 1.3  

restriction. 

b On the other hand, the minimum value better represent the quality to show that the interval 

is chosen widely enough to get a reliable estimation of 𝑅𝑔. 

c The score is defined as follows from the minimum value of 𝑞𝑅𝑔. 

𝑞𝑅𝑔 𝑟𝑎𝑛𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 = 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 × 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒, 

where primitive range score is defined to linearly interpolate the following table. 

 

Tab. 5-3  Definition Table of the qRg primitive Range Score 

Minimum value of 𝑞𝑅𝑔 𝑞𝑅𝑔 primitive range score 

～0.3 1 

0.4 0.8 

0.5 0.6 

0.6 0.4 

0.7 0.2 

0.8～ 0 

 

d Multiplication by the 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒 in the definition is added to avoid over evaluation for 

low quality data with insufficient intensities. 

e As for the reliability of the 𝑅𝑔 estimation, the score gives a different point of view other than 

the 𝑅𝑔 𝑠𝑡𝑑𝑒𝑣 𝑠𝑐𝑜𝑟𝑒. 
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6 Outline of the Program 

a Removing starting-q-range anomalies 

b Guinier-Porod model fitting 

c Determination of a sufficiently wider interval 

d Smoothing the curve in the approximate interval 

e Determination of an optimal Guinier interval 

f Estimation of the Rg 

g Estimation of the errors 

h Calculation of the quality index 

 

6.1 Removing starting-q-range Anomalies 

 

6.2 Guinier-Porod Model Fitting 

 

6.3 Determination of a sufficiently wider Interval 

 

6.4 Smoothing the Curve in the approximate Interval 
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6.5 Determination of an optimal Guinier Interval 

a So far, we have two smooth curves, i.e., one is a Guinier-Porod fitted curve on the whole 

interval and the other is a spline curve obtained in the approximate partial interval. (See 

Fig. 6-1 for example curves.) 

b The former curve is linear when seen in Guinier Analysis axes, i.e., in 𝑞2 for x-axis and 

𝐿𝑛(𝐼) for y-axis, so that it can be represented by its slope3, which is transformed into the Rg. 

c We use the latter curve to make the objective function smooth and faster to get an optimal 

interval for Guinier analysis. 

d In a simplified formation for illustration, the objective function and its optimization problem 

is defined as follows, using 𝑅𝑔 ’s from two divided sub-intervals (See Fig. 6-1). 

 

minimize: 𝐹(𝑞0, 𝑞2) = (𝑅𝑔(𝑞0, 𝑞1) − 𝑅�̂�)
2
+ (𝑅𝑔(𝑞1, 𝑞2) − 𝑅�̂�)

2
, 

where 

𝑞0: left end point of Guinier interval, 

𝑞1 = 𝑞0 + ∆𝑞: intermediate point to split into sub-intervals, 

∆𝑞: sufficiently small constant value to efficiently evaluate the head slope, 

𝑞2: right end point of Guinier interval, 

such that 𝑞1 = 𝑞0 + ∆𝑞 ≤ 𝑞2 ≤ �̂�, 

�̂�: approximate end point obtained as (4-2), 

𝑅𝑔(𝑝, 𝑞): 𝑅𝑔 calculated linearly in a interval [𝑝, 𝑞] in the spline, 

𝑅�̂�: 𝑅𝑔 obtained from Guinier ∙ Porod fitting. 

 

(6-1) 

 

e Although the above objective function is bivariate, i.e. of variables 𝑞0  and 𝑞2 , the main 

target of optimization is 𝑞0.4 

f Splitting into these sub-intervals makes the optimization more efficient because the 

deviation from linearity is more sharply evaluated for narrower intervals. (mainly in the left 

sub-interval) 

g The real objective function implemented in the program is slightly more complex with two 

more factors to minimize, one of which is size factor of the interval, the other of which is the 

starting factor of the interval. See the formulation (4-3). 

h The size factor is smaller for wider intervals, and the starting factor is smaller for earlier-

starting intervals. 

  

                                                   
3 The intercept is not important in this stage. 

 
4 In fact, it is observed that making it univariate by letting 𝑞2 = �̂� (constant) would not change the optimization 

result significantly. 



13 

Fig. 6-1  Optimization using smooth curves 

 

 

i It is essential that the smoothing factor for the spline be given sufficiently loose so that the 

objective function behaves moderately to correctly reflect the macroscopic trend of the data. 

See Fig. 6-2 for an inadequate spline example to understand the implication. 

 

Fig. 6-2  Example of an inadequate spline 
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6.6 Estimation of the Rg 

 

6.7 Estimation of the Errors 

 

6.8 Calculation of the Quality Index 
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7 Implementation Details 
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Appendix    

 

A Minimal History of SAXS Data Modeling 

a In this appendix, we try to summarize minimal amount of, possibly biased, information to 

verify the adequacy of our solution scheme. 

 

A.1 Guinier Law – André Guinier, 1939 

a André Guinier pioneered in the small-angle techniques discovering the fundamental law 

expressed as follows. 

 

𝐼(𝑄) ≈ 𝐺 exp (
−𝑄2𝑅𝑔

2

3
)    for low 𝑄 (A-1) 

 

b In logarithmic scaling, it appears as an equivalent linear relation between Ln(𝐼) and 𝑄2. 

 

ln(𝐼) ≈ ln(𝐼0) −
𝑅𝑔

2

3
𝑄2   for low 𝑄 (A-2) 

 

c The applicable range of 𝑄 of this approximation is later established as 𝑄 ∙ 𝑅𝑔 < 1.3. See 

Appendix C for details. 

d The Guinier Law is the most fundamental in the sense that it gives the size information (𝑅𝑔) 

regardless of the shapes of objects. 

 

A.2 Porod Law – Debye & Bueche, 1949; Günther Porod, 1951 

a Debye & Bueche and Günther Porod independently made the next fundamental progress 

discovering another fundamental law for higher Q ranges. 

 

𝐼(𝑄) =
𝐷

𝑄4
   for high 𝑄 (A-3) 

 

b At this stage, the invariance suggested by the following (A-4) over the various shapes of 

objects had a significant importance. 
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𝐷

𝐼𝑡𝑜𝑡𝑎𝑙
∝

𝑆

𝑉
 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫ 𝑞2

∞

𝑞=0

𝐼(𝑞)𝑑𝑞 

(A-4) 

 

c Give an example of application of the law. 

 

T.B.D. 

 

d However, from the viewpoint of verifying the adequacy of our program structure, the 

dependence (or variation) of the exponent from the different shapes clarified later is more 

important as described below. 

 

A.3 Generalized Porod Law for fractal systems – Bale & Schmidt, 1984 

a After the popularization by Mandelbrot, recognizing fractals in objects advanced in many 

fields including SAXS, and the Porod Law was generalized as below, allowing the exponent 

to vary according to the fractal dimension of the objects. 

 

𝐼(𝑄) =
𝐷

𝑄𝑑
   for larger 𝑄 (A-5) 

 

b This generalization clearly suggested the new role of the exponent (𝑑) as a shape information 

indicator. 
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A.4 Unified Model – 1995, Greg Beaucage 

a Guinier Law and generalized Porod Law had been used independently before Greg Beaucage 

introduced a unified model, concatenating the above two classical laws smoothly using the 

error function (erf). 

 

𝐼(𝑄) = 𝐺 exp (
−𝑄2𝑅𝑔

2

3
) +

𝐵

𝑄𝑑
[erf (

𝑄𝑅𝑔

61/2
)]

3𝑑

  (A-6) 

 

b Observe the technical idea of using error function by its properties as follows. 

 

erf(𝑥) → 0 as 𝑥 → 0 

erf(𝑥) → 1 as 𝑥 → ∞ 
(A-7) 

 

c The formula, modified later by Boualem Hammouda in [2] so as to be applicable not only for 

d=2, is given below. 

 

𝐼(𝑄) = 𝐺 exp (
−𝑄2𝑅𝑔

2

3
) +

𝐶

𝑄𝑑
[erf (

𝑄𝑅𝑔

61/2
)]

3𝑑

  (A-8) 

𝐶 =
𝐺𝑑

𝑅𝑔
𝑑 [

6𝑑2

(2 + 𝑑)(2 + 2𝑑)
]

𝑑
2

Γ (
𝑑

2
) (A-9) 

 

d This unification opened the possibility of global fitting to the data model. 
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A.5 Guinier-Porod Model – 2010, Boualem Hammouda 

a Boualem Hammouda introduced Guinier-Porod model in 2010, which concatenates the 

classical two laws differently against the previous Unified (Beaucage) model. 

b Instead of gradually transitioning by the error function (erf), this model separates the regions 

clearly imposing instead the continuity and smoothness conditions at the boundary, which is 

given in his paper (as explained in detail in the next Appendix B). 

 

𝐼(𝑄) = 𝐺 exp (
−𝑄2𝑅𝑔

2

3
)  for 𝑄 ≤  𝑄1, 

𝐼(𝑄) =
𝐷

𝑄𝑑
 for 𝑄 ≥  𝑄1 

(A-10) 

𝑄1 =
1

𝑅𝑔
(
3𝑑

2
)
1/2

, 

𝐷 = 𝐺 exp (
−𝑄1

2𝑅𝑔
2

3
)𝑄1

𝑑 = 𝐺 exp (−
𝑑

2
) (

3𝑑

2
)
𝑑/2 1

𝑅𝑔
𝑑 

(A-11) 

 

c To understand the relation between the Guinier law application restriction (Q𝑅𝑔 < 1.3) and 

this automatically determined boundary (𝑄1), transform the 𝑄1 definition formula in (A-11) 

into the following. 

 

𝑄1𝑅𝑔 = (
3𝑑

2
)
1/2

 (A-12) 

 

d And observe the 𝑄1𝑅𝑔 values varying the Porod exponent (d) from 1 through 4. 

 

Tab. A-1  𝑸𝟏𝑹𝒈 values corresponding to different Porod exponent5 

Porod exponent 𝑄1𝑅𝑔 Fractal Classification Applicable samples 

1 1.22 

mass fractals 

a stiff rod (or thin cylinder) 

5/3 1.58 ‘fully swollen’ chains (in a good solvent) 

2 1.73 
Gaussian polymer chains or two-dimensional 

structures (such as lamellae or platelets) 

3 2.12 

surface fractals 

particles with very rough surfaces, 

‘collapsed’ polymer chains (in a bad solvent) 

4 2.45 particles with smooth surfaces 

 

 

                                                   
5 This table is made by simply summarizing his 2010 paper, except the 𝑄1𝑅𝑔 columns added by the authors. 
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e The observation leads to an understanding that the Guinier law application restriction 

corresponds to particles with smaller values of exponent around one and the restriction 

might be relaxed up to Q𝑅𝑔 < 2.45 for particles with larger values of exponent.6 

f Jan Ilavsky calls for his user’s attention in his Irena Manual that “However, there is a 

problem here. For systems, which do not adhere to Guinier-Porod model assumptions, cannot 

be modeled by the Guinier-Porod model at all. For example, these would be hierarchical 

fractal systems, particulate systems with broad size distribution, etc.” 

g Boualem Hammouda presented two more variations of the model in the above-mentioned 

paper. One is a generalized form, based on the works by other pioneers, for non-spherical 

scattering objects which adds an ‘s’ parameter with “3 − s” suggesting the dimensionality (1D, 

2D or 3D) of the objects. The other is a more complex three-region model, which adds two 

dimensionality parameters, 𝑠1  and 𝑠2  respectively to describe the first two generalized 

Guinier regions with the remaining third Porod region. See the paper for details.7 

  

                                                   
6 In spite of this relaxation possibility, the program usually conforms to the constraint such that Q𝑅𝑔 < 1.3. See 

appendix C for details. The constraint can be relaxed by an optional setting. 

 
7 The current program only utilizes the simplest form of the model for simplicity and speed. 
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B Derivation of the two-region Guinier-Porod Model 

a It is a trivial chain of calculus, but we show the derivation in detail here since we believe it 

is important for understanding the implication of its fitting. 

b The simplest two-region Guinier-Porod model can be thought of as a natural consequence of 

the two classical models in the following sense. 

c It is derived simply from the following two equations requiring respectively the continuity 

(B-1) and smoothness (B-2), i.e. having the same slope, at the boundary 𝑄1. 

 

𝐼(𝑄) = 𝐺 exp (
−𝑄2𝑅𝑔

2

3
) =

𝐷

𝑄𝑑
     at 𝑄 = 𝑄1 (B-1) 

𝑑𝐼

𝑑𝑄
= 𝐺 exp (

−𝑄2𝑅𝑔
2

3
)(

−2𝑄𝑅𝑔
2

3
) = −𝐷𝑑𝑄−𝑑−1    at 𝑄 = 𝑄1 (B-2) 

 

d The 𝑄1 definition formula is easily derived by eliminating the shaded Guinier term from 

(B-1) and (B-2) as follows.  

 

𝐷

𝑄𝑑
(
−2𝑄𝑅𝑔

2

3
) = −𝐷𝑑𝑄−𝑑−1    at 𝑄 = 𝑄1 (B-3) 

 𝑄−𝑑+1 (
−2𝑅𝑔

2

3
) = −𝑑𝑄−𝑑−1    at 𝑄 = 𝑄1 (B-4) 

𝑄2 =
3𝑑

2𝑅𝑔
2     at 𝑄 = 𝑄1 (B-5) 

𝑄1 =
1

𝑅𝑔
(
3𝑑

2
)
1/2

 (B-6) 

 

e The 𝐷 definition formula is obtained from (B-1), substituting 𝑄1 by its shaded definition 

above and reducing as follows.  

 

𝐷 = 𝐺 exp (
−𝑄2𝑅𝑔

2

3
)𝑄𝑑    𝑎𝑡 𝑄 = 𝑄1 (B-7) 

𝐷 = 𝐺 exp

(

 
 

−(
1
𝑅𝑔

(
3𝑑
2 )

1/2

)

2

𝑅𝑔
2

3

)

 
 

(
1

𝑅𝑔
(
3𝑑

2
)
1/2

)

𝑑

= 𝐺 exp (−
𝑑

2
) (

3𝑑

2
)
𝑑/2 1

𝑅𝑔
𝑑 

(B-8) 
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C Notes on the upper limit of Guinier Approximation 

a Guinier Approximation is usually considered to be valid for low-q ranges such that 𝑞𝑅𝑔 < 1.3. 

b However, according to the Guinier-Porod model, there is a possibility that the applicable 

range be extended as far as 𝑞𝑅𝑔 < 2.45 for some kind of particles (as with smooth surfaces). 

c We will try here to clarify this gap. 

d Guinier Approximation is derived theoretically by omitting higher-than-4th power terms from 

the following Maclaurin series. 

 

sin (𝑞𝑟)

𝑞𝑟
= 1 −

𝑞2𝑟2

3!
+

𝑞4𝑟4

5!
− ⋯ (C-1) 

𝐼(𝑞) = 4𝜋 ∫ 𝛾(𝑟)
sin (𝑞𝑟)

𝑞𝑟
𝑟2𝑑𝑟

𝐷

0

 (C-2) 

 

e Skipping the details, Guinier Approximation corresponds to the shaded first two terms in 

the series. 

f According to L.A. Feigin and D.I. Svergun 1987 (section 3.3.1), deviations caused by the 

omission can be estimated by the following formula, which is valid to an accuracy of terms 

proportional to 𝑞6. 

 

𝛥(𝑞) ≈ 𝛥𝑀𝜇4(𝑞𝑅𝑔)
4
 

where 𝛥𝑀 =
3𝑀6𝑀2 − 5𝑀4

2

360𝑀2
2 ,  

 𝑀𝑘 : normalized 𝑘th moment of function 𝛾(𝑡), 

𝜇 = 𝐷/𝑅𝑔, 𝐷: the  largest dimension of in a particle 

(C-3) 

 

g Although 𝛥𝑀 is said to vary between 1 × 10−4 and 2 × 10−4, we first ignore the variation 

of 𝛥𝑀  and see a possibility of relaxing (or tightening) the 𝑞𝑅𝑔  upper limit, from the 

reciprocal relationship of 𝜇 and 𝑞𝑅𝑔 when keeping the deviation 𝛥(𝑞) to a constant level, 

as in Tab. C-1. 

 

Tab. C-1  possibility of relaxing the q*Rg upper limit 

particle shape 𝜇 𝑞𝑅𝑔 level remarks 

solid sphere 2.46 1.30 setting this to the base level 

infinitely thin disk 2.28 1.40 value to keep the deviation 𝛥(𝑞) to the 

same level 

infinitely long rod 3.46 0.92 same as above 

ellipsoid of rotation with c/a=2 3.56 0.90 same as above 
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h In order to make the discussion more accurate, we have to get the values 𝑀𝑘  for various 

shapes and the relationship between 𝛥𝑀 and 𝜇. (T.B.D.) 

i However, without further study, since (2 × 10−4)1/4 ≈ 1.2, it seems that the 𝑞𝑅𝑔 upper limit 

should be lower than 1.68 = 1.4 × 1.2 at the most and can be as low as 0.75 = 0.90/1.2 at the 

least. 
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D Notes on Statistics 

 

D.1 Weighted Least Squares 
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Tab. D-1  Summary of Weighted Least Squares 

𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑁

] ,  𝑿 = [

1 𝑥1

1 𝑥2

⋮ ⋮
1 𝑥𝑁

] ,  𝛃 = [𝛽1 𝛽2] (D-1) 

𝒚 = 𝑿𝜷 + 𝜺 (D-2) 

  

minimize: (𝒚 − 𝑿𝜷)𝑇𝑾(𝒚 − 𝑿𝜷) (D-3) 

𝐖 =

[
 
 
 
w1

w2

⋱
wN]

 
 
 
,  wi =

1

σi
2
 (D-4) 

  

(𝑿𝑻𝑾𝑿)�̂� = 𝑿𝑻𝑾𝒚 (D-5) 

�̂� = (𝑿𝑻𝑾𝑿)−1𝑿𝑻𝑾𝒚 (D-6) 

  

𝑿𝑻𝑾𝑿 = [
∑𝑤𝑖 ∑wixi

∑wixi ∑wixi
2
] ,  𝑿𝑻𝑾𝒚 = [

∑𝑤𝑖𝑦𝑖

∑𝑤𝑖𝑥𝑖𝑦𝑖

] (D-7) 

  

(𝑿𝑻𝑾𝑿)−𝟏 =
1

∆
[
∑wixi

2 −∑wixi

−∑wixi ∑𝑤𝑖

] ,  ∆= ∑𝑤𝑖 ∑wixi
2 − (∑wixi)

𝟐

 (D-8) 

  

�̂� = (𝑿𝑻𝑾𝑿)−𝟏𝑿𝑻𝑾𝒚 =
1

∆
[
∑wixi

2 ∑𝑤𝑖𝑦𝑖 − ∑wixi ∑𝑤𝑖𝑥𝑖𝑦𝑖

−∑wixi ∑𝑤𝑖𝑦𝑖 + ∑𝑤𝑖 ∑𝑤𝑖𝑥𝑖𝑦𝑖

] (D-9) 

  

𝒚 − 𝑿�̂� = 𝒆 = [

e1

e2

⋮
eN

] (D-10) 

  

  S = (𝒚 − 𝑿�̂�)
𝑇
𝑾(𝒚 − 𝑿�̂�) = ∑wiei

2 = ∑
ei

2

σi
2
 (D-11) 

σ2 =
S

(N − 2)
 (D-12) 

  

Var(�̂�) = 𝜎2(𝑿𝑻𝑾𝑿)−1  (D-13) 
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D.2 Propagation of Errors 

 

 

E Python Modules and Tools 
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