BL-27A, BL-27B/2021G600

ホウ素同位体組成を変えた模擬廃棄物ガラスの放射光分析 Synchrotron analysis of simulated waste glasses different in boron isotope ingredient

永井崇之^{1,*}, 刀根雅也¹, 勝岡菜々子¹, 岡本芳浩², 馬場祐治³, 秋山大輔⁴
¹日本原子力研究開発機構・核燃料サイクル工学研究所, 〒319-1194 東海村村松 4-33
²日本原子力研究開発機構・物質科学研究センター, 〒679-5148 佐用町光都 1-1-1
³日本原子力研究開発機構・先端基礎研究センター, 〒319-1195 東海村白方 2-4
⁴東北大学・多元物質科学研究所, 〒980-8577 仙台市青葉区片平 2-1-1

Takayuki Nagai^{1,*} Masaya Tone¹ Nanako Katsuoka¹

Yoshihiro Okamoto² Yuji BaBa³ and Daisuke Akiyama⁴

¹Nuclear Fuel Cycle Engineering Lab., JAEA, 4-33 Muramatsu, Tokai-mura, 319-1194, Japan

²Materials Sciences Research Center, JAEA, 1-4-1 Koto, Sayo-cho, 679-5148, Japan
 ³Advanced Science Research Center, JAEA, 2-4 Shirakata, Tokai-mura, 319-1195, Japan
 ⁴IMRAM, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan

1 <u>はじめに</u>

JAEAは、核燃料再処理工場で発生した高レベル 放射性廃液(HAW)のガラス固化体製造技術を確立し、 当該技術の高度化を目指した研究開発を進めている.

筆者らは、ガラス固化に係る基盤的な知見を充実 させるため、非RIで代替した模擬ガラス固化体試料 を作製し、ホウケイ酸ガラス組成に含有する各種元 素の化学状態等をXAFS測定で評価してきた^[1].ま た、中性子利用実験による構造解析に供する試料と して、中性子断面積の大きい¹⁰Bを排除した¹¹Bガラ スを用いている.しかしながら、Si-O構造のラマン スペクトルやシミュレーション解析結果から、B同 位体組成によるSi-O構造に差が認められた.そこで、 2021 年度に¹⁰Bと¹¹Bの模擬廃棄物ガラスの Si,Cr,Fe,MoのK端、CeのL3端をXAFS測定し、いず れの元素もB同位体組成による差をほとんど確認で きなかった.

2022年度は、¹⁰Bと¹¹Bの単純組成ガラス原料でSi のK端をXAFS測定し、ガラス中で複数の原子価が存 在するCe,Uを対象に¹⁰Bと¹¹BのCe含有ガラスとU含 有ガラスを作製してCe,UのL3端をXAFS測定した.

2 実験

¹⁰B 又は¹¹B の単純組成ガラス原料は,表1に示す 組成となるよう H₃¹⁰BO₃ 又は H₃¹¹BO₃, SiO₂, Na₂CO₃の混合粉末を SiC ルツボに入れ 1150℃で溶 融し室温まで冷却した. Si の K端 XAFS 測定は,冷 却後のガラス原料塊を薄板状の試料に加工して測定 面をカーボン蒸着し,銅(Cu)基板へカーボン両面テ ープで貼り付け, BL-27A の XPS 測定系の真空チャ ンバ内にセットして電子収量法で行った.

表1 ガラス原料組	え (目標値)	: mol%)
-----------	---------	---------

-			
-	B ₂ O ₃	SiO ₂	Na ₂ O
	17.2	65.5	17.3

Ce 添加ガラス試料は, ¹⁰B,¹¹B の単純組成ガラス 原料粉末に **CeO**₂ を 0.33mol%添加して Al₂O₃ ルツボ に入れて 1150℃で再溶融し,黒鉛容器に移して徐冷 した後,ガラス塊の破断面とガラス凝固表面を測定 に供した. Ce の L₃端 XAFS 測定は,BL-27B の多素 子検出器を用いて蛍光法で行った.

U添加ガラス試料は、¹⁰B,¹¹Bの単純組成ガラス原 料粉末に重ウラン酸ナトリウム(Na₂U₂O₇)を添加して Al₂O₃皿にのせて管状炉へセットし、O₂ガス又はAr-H₂混合ガスを掃気しながら1150℃で溶融し冷却した. UのL₃端 XAFS 測定は、図1に示すU添加ガラス試 料を Al₂O₃皿に固着した状態のままポリ袋に封入し、 封入状態のまま、BL-27B において透過法で行った.

図1 作製した U 添加ガラスの外観写真

3 結果および考察

SiのK端ピークは1848 eV 付近に出現し,図2に 示すように¹⁰B,¹¹B ガラスは Na₂O を含むため SiO₂ ガラスより低エネルギー側へピークがシフトする. このシフトは、Na2O含有によるケイ酸ガラス Si-K 端ピークが低エネルギー側へシフトする状況^[2]と同 様である.一方、B同位体組成による Si-K 端 XANES スペクトルの差は小さく.¹⁰BガラスのK端 ピークが¹¹Bガラスより高エネルギー側に現れたが、 この差は測定誤差範囲に収まる.つまり、単純組成 ガラス原料において、B同位体組成による Si局所構 造への影響は小さいと考えられる.

ホウケイ酸ガラス中のCeは3価と4価が共存し, 図3に示すCeを3価に還元調整したガラスとCeO2 のL3端XANESスペクトルは形状が大きく異なる. ¹⁰Bと¹¹Bのガラス中のCeはいずれも3価と4価の 共存状態にあり,破断面のスペクトルからB同位体 組成による差は認められないが,¹¹Bガラス凝固表 面のみ他と比べてピークが高い.このことから,単 純組成ガラス原料にCeを添加した組成において凝 固表面に若干の差が認められたが,B同位体組成に よるCe局所構造への影響は小さいと考えられる.

図 3 Ce の L3 端 XANES スペクトル

ホウケイ酸ガラス中のUは概ね6価状態で存在す るが、溶融時の雰囲気によって容易に還元され、こ の還元反応の進行はガラス化学組成によって差が認 められる.図4中の挿入図に示すように酸化性雰囲 気であるO2ガス掃気条件で溶融した¹⁰B,¹¹BのU含 有ガラスのホワイトラインは、両者ともUO3と一致 し6価状態にあり、両者のスペクトル形状に差は見 られない.また還元性雰囲気でありAr+H2混合ガス 掃気条件で溶融した¹⁰B,¹¹BのU含有ガラスのホワ イトラインは、両者ともUO2と一致し4価状態にあ り、両者に差は見られない.これらのことから、B 同位体組成によるガラス中のUの局所構造への影響 はほとんどないと考えられる.

4 <u>まとめ</u>

2021 年度に XAFS 測定した ¹⁰B と ¹¹B の模擬廃棄 物ガラスの結果から, B 同位体組成による含有元素 の局所構造への影響は認められなかった.ただし, ガラス中に共存する元素間の酸化還元挙動の影響が 大きく, B 同位体組成による影響を検知できない可 能性が考えられた.

そこで 2022 年度は、単純組成ガラス原料に測定 元素のみを添加したガラスを作製し、B 同位体組成 による影響を確認した.その結果、複数の原子価が 存在する Ce や U はその影響がほとんど認められず、 ガラス原料である Si も僅かな差に留まった.これら のことから、B 同位体組成による含有元素の局所構 造への影響はかなり小さいと判断する.

謝辞

PF 実験において,宇佐美先生及び放射線管理室の方々にご協力頂きました.ここに謝意を表します.

Photon Factory Activity Report 2022 #40 (2023)

参考文献

- [1] 永井, 他, 第34回PFシンポジウム 046D (2017).
- [2] G. S. Henderson, J. Non-Crystalline Solids, **183**, 43-50 (1995).

* nagai.takayuki00@jaea.go.jp