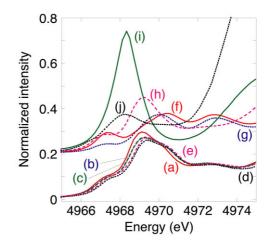
9A, 9C/2007G576

Can the photo-catalytic reactivity of semiconductor TiO₂ be predicted based on local site information of Ti K-edge X-ray absorption?

Yasuo Izumi*


Department of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522

Transition metal cations [1] and hetero anions have been doped to TiO_2 to promote the photo-catalysis for decompositions of volatile organic compounds and industrial dyes under visible light. In this report, TiO_2 and sulfur-doped TiO_2 both with uniform mesopores were synthesized and the Ti local sites were studied using Ti Kedge X-ray absorption.

Mesoporous TiO₂ was synthesized via the hydrolysis of Ti(*i*-PrO)₄ in the presence of dodecylamine [2]. Mesoporous S-TiO₂ was synthesized by adding water to the mixture of Ti(*i*-PrO)₄, dodecylamine, and thiosulfate with molar ratio 2 : 1 : 2. All the synthetic steps were identical to those for mesoporous TiO₂ except for washing with CS₂ after hydrolysis at 453 K for 10 days (denoted as CU-H). Another mesoporous S-TiO₂ was synthesized similarly except for washing with ether after hydrolysis at 333 K for 4 days (methanol and ether in ref. 2) and washing with CS₂ after hydrolysis for 10 days (denoted as CU-J). Ti K-edge XAFS spectra were measured in transmission mode.

Ti Κ pre-edge peak patterns for Mesostructured/porous $TiO_2/S-TiO_2$ (Figure 1a – e) resembled that for Ilmenite FeTiO₃ (Figure 1h; $d_{\text{Ti-O}} = 0.1875$ nm, N = 3, $d_{\text{Ti-O}}$ = 0.2087 nm, N = 3). Total Ti–O coordination of 3.6 - 4.1 was given at 0.169 - 0.197 nm for mesoporous TiO₂/S-TiO₂ based on Ti K-edge EXAFS analyses. No crystalline peaks were observed in the region $2\theta_{\text{Bragg}} = 10$ - 50 deg in XRD. Thus, octahedral TiO₆ coordination distorted to essentially 4 coordination and constituted amorphous [S-]TiO₂ matrix.

With washing with *p*-toluenesulfonic acid, the shoulder peaks at 4970.5 - 4970.6 eV became relatively greater (Figure 1a, b), suggesting greater distortion of Ti site due to the removal of dedecylamine. After oxidative dehydrogenation of ethanol under visible light [1], no significant change was observed in the Ti pre-edge peak

Figure 1. Ti K pre-edge peaks for meso TiO_2 before/after template washing (a, b), meso S-TiO₂ (CU-J) after template washing (c) and after photo-catalysis (d), meso S-TiO₂ (CU-H) after photo-catalysis (e), anatase-type TiO₂ (f), rutile-type TiO₂ (g), FeTiO₃ (h), Ti(*i*-PrO)₄ (i), and TiS₂ (j).

pattern (Figure 1c - e), demonstrating the stability of mesoporous S-TiO₂ samples.

Uniform mesopores centered at 2.7 nm (mesoporous TiO_2) and 2.9 nm (mesoporous $S-TiO_2$, CU-H) were detected in XRD in contrast to non-uniform sample CU-J. The presence/absence of uniform mesopores for $S-TiO_2$ was not detected in XAFS (Figure 1c – e and EXAFS).

References

- [1] D. Masih, H. Yoshitake, Y. Izumi, *Appl. Catal. A* 325(2), 267 282 (2007).
- [2] H. Yoshitake, T. Sugihara, T. Tatsumi, *Chem. Mater.* 14(3), 1023 – 1029 (2002).

* yizumi@faculty.chiba-u.jp

sample	condition	energy position (eV)		
meso TiO ₂	before template washing	4967.1(w,sh)	4969.1(s), 4970.4(vw,sh)	4972.6(w)
	after template washing	4967.2(w,sh)	4969.3(s), 4970.5(w,sh)	4972.6(w)
meso S-TiO ₂ (CU-J)	after template washing	4967.2(w,sh)	4969.3(s), 4970.5(w,sh)	4972.6(w)
	after visible light catalysis	4967.4(w,sh)	4969.4(s), 4970.6(w,sh)	4972.9(w)
meso S-TiO ₂ (CU-H)	after visible light catalysis	4967.3(w,sh)	4969.4(s), 4970.6(w,sh)	4972.9(w)
TiO ₂	anatase	4967.4(m)	4970.4(s)	4972.9(m)
	rutile	4967.1(w)	4970.0(s)	4973.0(m)
FeTiO ₃		4967.1(w)	4969.2(s)	
Ti(<i>i</i> -PrO) ₄			4968.3(s)	
TiS ₂			4968.2(s)	

 Table 1: Titanium K pre-edge peak energy positions (eV)