Composition dependence of valence states in epitaxial LaCo_{1-x}Mn_xO₃ thin films studied by X-ray absorption spectroscopy

Toshihiro ISHIHARA¹, Miho KITAMURA¹, Isao OHKUBO*¹, Koji HORIBA^{1,4,5}, Hiroshi KUMIGASHIRA^{1,4,5}, Yuji MATSUMOTO^{2,4}, Hideomi KOINUMA^{3,4}, and Masaharu OSHIMA^{1,4,5} ¹Department of Applied Chemistry, The Univ. of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan ²MSL, Tokyo Inst. of Technology, Midori-ku, Yokohama, 226-8503, Japan ³Graduate School for Frontier Sciences, The Univ. of Tokyo, Kashiwa, Chiba, 277-8583, Japan ⁴CREST, Japan Science & Technology Corporation (JST), Chiyoda-ku, Tokyo, 102-0075, Japan ⁵The University of Tokyo Synchrotron Radiation Research Organization,Bunkyo-ku, Tokyo, 113-8656, Japan.

Introduction

Ferromagnetic semiconductors with high Curie temperatures are of great interest for applications to spinbased multifunctional devices. In the search for new ferromagnetic semiconductors with high Curie temperatures (Tc), double-perovskite manganites exhibiting ferromagnetic semiconducting properties near to room temperature have received a renewed interest. La₂CoMnO₆ is a ferromagnetic semiconductor that has a potential of applying to spintronics devices because of its high ferromagnetic transition temperature (Tc ~ 240 K). The ferromagnetism of LaCo_{0.5}Mn_{0.5}O₃ is explained by the mechanism due to a superexchange interaction in Co-O-Mn, which is predicted theoretically by Goodenough -Kanamori (G-K) rules. However, electronic states of transition metals responsible for the ferromagnetic interaction have not been elucidated yet. G-K rules predict both $\operatorname{Co}^{2+}(d^7)$ -O-Mn⁴⁺(d^3) and $\operatorname{Co}^{3+}(d^6)$ -O- $Mn^{3+}(d^4)$ [1] interactions to exhibit a ferromagnetic behavior. In this study, X-ray absorption spectroscopy (XAS) of LaCoO₃-LaMnO₃ composition spread films was carried out to evaluate the valence states of transition metal ions for studying the origin of ferromagnetism in LaCo_{0.5}Mn_{0.5}O₃.

Experimental

Epitaxial LaCoO₃-LaMnO₃ composition spread films were fabricated on LaAlO₃ (100) substrates using a pulsed laser deposition method. During deposition, the substrate temperature was kept at 600 °C at an oxygen pressure of 100 mTorr. Composition and structures of the films were characterized by X-ray fluorescence (XRF) and X-ray diffraction (XRD), respectively. XAS spectra were obtained by measuring the sample drain current at an undulator BL-2C beamline.

Results and discussion

Figure 1 shows Co 2p- 3d absorption spectra (a) and Mn 2p-3d absorption spectra (b) at room temperature. With increasing the incorporated Mn into LaCo³⁺O₃, The shape of Co $2p_{3/2}$ and Co $2p_{1/2}$ peaks are becoming change, as shown in Fig.1 (a). Park *et al.* reported that Co $2p_{3/2}$ spectra of LaCo³⁺O₃ are quite different from that of Co²⁺O [2]. By comparing our Co 2p-3d XAS spectra with the reported spectra, it is indicated that the valency of Co

varies from Co^{3+} to Co^{2+} as a result of Mn substitution in $\text{LaCo}^{3+}\text{O}_3$. Mn $2p_{3/2}$ spectra also show changes in shape with the substitution of Co by Mn, as shown in Fig. 1 (b). This suggests that the replacement of Co by Mn increases the valency of Mn from Mn^{3+} to Mn^{4+} , which is consistent with $\text{La}_{1-x}\text{Sr}_x\text{MnO}_3$ XAS spectra obtained by Abbate *et al.* [3]. Thus, the valency changes from Co^{3+} to Co^{2+} , and from Mn^{3+} to Mn^{4+} due to the charge transfer from Mn to Co were clearly observed. This charge transfer results in a ferromagnetic semiconductor $\text{LaCo}_{0.5}\text{Mn}_{0.5}\text{O}_3$ consisting of mainly Co^{2+} and Mn^{4+} . Therefore, it is suggested that a superexchange interaction between Co^{2+} and Mn^{4+} via an oxygen ion rather than Co^{3+} and Mn^{3+} is the origin of ferromagnetism in $\text{LaCo}_{0.5}\text{Mn}_{0.5}\text{O}_3$.

Fig. 1: XAS spectra of $LaCo_{1-x}Mn_xO_3$: (a) Co 2p-3d, (b) Mn 2p-3d.

References

- [1] J. B. Goodenough et al., Phys. Rev. 124, 373 (1961).
- [2] J.-H. Park et al., Phys. Rev. B 55, 11072 (1997).
- [3] M. Abbate et al., Phys. Rev. B 46, 4511 (1992).
- * ohkubo@sr.t.u-tokyo.ac.jp