Polarization-dependent Ti K x-ray absorption and emission studies of Ti₂O₃ single crystal

 Hiroyuki MASO¹, Hidenao KURIHARA¹, Yutaka MUKAEGAWA¹, Yuki UTSUMI¹, Hitoshi SATO², Yasuhisa TEZUKA³, Toshiaki IWAZUMI⁴, Fumitoshi IGA⁵, Masami TSUBOTA⁶, Hirofumi NAMATAME² and Masaki TANIGUCHI^{1,2}
¹Graduate School of Science, ²HiSOR, ⁵ADSM, ⁶ Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima ¹739-8526, ²739-0046, ⁵739-8520, ⁶739-8521, Japan ³Graduate School of Science and Engineering, Hirosaki University, Hirosaki 036-8561, Japan ⁴Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Japan

Introduction

Ti₂O₃ exhibits a metal (high-temperature phase) insulator (low-temperature phase) transition (MIT) around 450 K. The Ti 3*d* levels in Ti₂O₃ split into the t_{2g} and e_g^{σ} levels. Due to the trigonally distorted crystal field, the t_{2g} level further splits into the e_g^{π} and a_{1g} levels. Tanaka has proposed a new MIT model taking into account the many-body effect and predicted that the Ti 3*d* configuration of the Ti ion pair along *c*-axis changes from $(a_{1g}\uparrow, a_{1g}\downarrow)$ in the insulating phase to $(a_{1g}\uparrow, e_g^{\pi}\uparrow)$ in the metallic phase [1]. Recently, we have detected the 3*d* configuration change due to MIT by means of polarization-dependent Ti 2*p*-3*d* absorption spectroscopy [2]. In this report, we present the polarization-dependent Ti *K* x-ray absorption and emission (XAS and XES) spectra of Ti₂O₃ single crystal.

Experiment

The Ti *K* XAS and XES experiments were carried out at BL-7C and BL-15B1 with polarized and depolarized configurations for XES, respectively. ESCARGOT with a Ge(400) crystal and a PSPC detector were used to measure the XES spectra. Both spectra were measured with E//c and $E\perp c$ conditions, where *E* denotes a polarization vector of incidence light. Note that the Ti ion pair is parallel to the *c*-axis. Experimental data presented here is taken at room temperature.

Results and discussion

An upper side in Fig. 1 shows Ti *K* XAS spectra of Ti₂O₃. Thick and thin curves represent spectra measured with E//c and $E\perp c$ conditions. One notices that a feature of the XAS spectra is different between two conditions. Peak energy of a white line of the E//c-spectra is lower than $E\perp c$ -spectra by about 2 eV and a clear shoulder is found just below the white line. This difference shows a remarkable anisotropy in the unoccupied Ti 4p states of Ti₂O₃. The lower energy of the $4p_{//}$ bands than the $4p_{\perp}$ bands contradicts our intuition, considering the a_{1g} states is mainly occupied.

A lower side in Fig. 1 shows the E//c- and $E \perp c$ - XES spectra in the K_{α} region measured at 4958.3 eV, far below

the Ti K-edge, with polarized configuration. Abscissa is denoted by the Raman shift. Interestingly, the polarization-dependent Raman spectra are very similar to the K XAS spectra with respect to the energy shift and the shoulder structure. This experimental result suggests that the structure of the Raman spectra originates from the 2p-4p transition. This trend is also found for TiO₂ single crystal [3].

Features of the XES spectra strongly depend on the excitation energy below 4964 eV and show several fine structures depending on the E//c and $E\perp c$ conditions. Detailed analysis is in progress and experiments above 450 K is also planned.

Fig.1. Polarization-dependent Ti K XAS and Raman spectra of Ti_2O_3 . The Raman spectra were measured at 4958.3 eV, far below the K-edge.

References

- [1] A. Tanaka, J. Phys. Soc. Jpn. 73, 152 (2004).
- [2] H. Sato et al., J. Phys. Soc. Jpn. 75, L053702 (2006).
- [3] Y. Tezuka, private communication.

*jinjin@hiroshima-u.ac.jp