XPS and NEXAFS studies of C₆₀-Co films with giant tunnel magnetoresistance

Seiji SAKAI^{*1}, Yoshihiro MATSUMOTO¹, Hiroshi NARAMOTO¹, Norie HIRAO², Yuji BABA², Toshihiro SHIMADA³, Yoshihito MAEDA^{1,4}

¹Advanced Science Research Center and ²Synchrotron Radiation Center,

Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195, Japan

³Department of Chemistry, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan

⁴Department of Energy Science and Technology, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

In recent years, investigations on molecular spin electronics which control a transport of spin-polarized carrier through organic molecules including C60, carbon nanotubes (CNTs) and graphene have been performed intensively.[1] Very recently, we have found that C₆₀-Co mixture films where Co nanoparticles are dispersed into a matrix of the C60-Co compound show the large tunnel MR effect of 80-90% at low temperature.[2,3] The observed MR ratios cannot be explained by the spin polarization of crystalline Co (~40%), and hence it is expected that the electronic and magnetic structures of the C60-Co compound play a significant role to the spin-dependent transport in the C60-Co films. In the present work, we studied about local electronic states of the C60-Co films by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. [4]

C60-Co mixture films were prepared by the codeposition method under the UHV condition $(10^{7}Pa)$. The experimental set-up for co-deposition consists of a Knudsencell for C_{60} (99.99%, sublimated) and an electron beam evaporator for Co (99.99%). The C_{60} -Co films with compositions of $C_{60}Co_x$ (x: the number of Co atoms per a C_{60} molecule), and thickness of 50 nm were deposited on Ag films on MgO (001). A pure C_{60} film was prepared in a similar way. The prepared samples were transferred to an experimental chamber without breaking the UHV condition. XPS measurements were performed at Photon Factory BL-27A of High Energy Accelerator Research Organization (KEK-PF) employing Mg K_{α} (hv=1253.6eV) and Y M_{ζ} (hv=132.3eV) X-ray sources. NEXAFS measurements were performed at BL-7A of KEK-PF. The NEXAFS spectra were obtained by the total electron yield method.

Figure 1 and 2 show the XPS spectra in the valence region and the C1s NEXAFS spectra for the C_{60} film and the C_{60} -Co film ($C_{60}Co_3$) composed of the C_{60} -Co compound.[5] In Figure 1, five peak components (A_1 - A_5) associated with the molecular orbitals (MOs) of C_{60} are confirmed in the C_{60} film. In the C_{60} -Co films, the A_3 - A_5 peaks lying in the range of $E_B = 5$ -9eV show comparable shifts from the positions in the C_{60} film. Meanwhile, the structure close to the Fermi level (E_B <5eV) shows significant differences from the C_{60} film, as represented by the peak components of B_1 - B_5 . The B_2 and B_4 peaks seem to be corresponding to the A_1 and A_2 peaks from the shifted quantities. Investigations on the C_{60} -Ti and C_{60} -Rb composites [6,7] have pointed out that, when metal atoms form covalent bonds with carbon atoms, new peaks appear close to the Fermi level (E_{B} ~3-5eV) or close to the HOMO level of C₆₀ (A₁). Judging from these reported results, the observed peaks of B₁, B₃ and B₅ in the C₆₀-Co film are reasonably ascribed to the hybridized states between the C₆₀ π and Co 3d orbitals. The comparable shifts of the A₃-A₅ peaks in the C₆₀-Co film indicate the cage distortion of C₆₀, possibly by the hybridized bond formation. The π -d hybridization is confirmed in the absorption spectra. In Figure 2, the first peak of the C₆₀-Co film is shifted toward the higher energy side and the peak width is wider than the LUMO peak of the C₆₀ film. This peak broadening and shift indicate the formation of the covalent bonds with the charge transfer (back donation) between C₆₀ π and Co 3d orbitals.

Figure 1 XPS spectra of the $C_{\scriptscriptstyle 60}$ and $C_{\scriptscriptstyle 60}\text{-}Co$ films $(C_{\scriptscriptstyle 60}\text{Co}_{\scriptscriptstyle 3})$ in the valence region

Figure 2 NEXAFS spectra of the C_{60} and C_{60} -Co films $(C_{60}Co_3)$ by C1s core excitation.

- [1] W. J. M. Naber et al., J. Phys. D, 40 R205 (2007).
- [2] S. Sakai et al., Appl. Phys. Lett. 89 113118 (2006).
- [3] S. Sakai et al., Appl. Phys. Lett. 90 242104 (2007).
- [4] Y. Matsumoto et al., Mater. Res. Soc. Symp. Proc. in press.
- [5] S. Sakai et al., Thin Solid Films 515 7758 (2007).
- [6] M. Nyberg et al., Phys Rev. B 63 115117 (2001)
- [7] S. Satpathy et al., Phys. Rev. B 46 1773 (1992).

* sakai.seiji@jaea.go.jp