XAFS evidence on redox-nature of palladium in Pd-Mg₃V₂O₃ catalysts

Shigeru SUGIYAMA^{*1,2,3}, Yuya UEHARA³, Yuuki HIRATA³, Keizo NAKAGAWA^{1,2,3}, Ken-Ichiro SOTOWA^{1,2,3}, Toshihiro MORIGA^{1,3} ¹Department of Advanced Materials, Institute of Technology and Science,

The University of Tokushima, Minamijosanjima, Tokushima 770-8506, Japan

²Department of Geosphere Environment and Energy, Center for Frontier Research of Engineering,

The University of Tokushima, Minamijosanjima, Tokushima 770-8506, Japan

³Department of Chemical Science and Technology, The University of Tokushima,

Minamijosanjima, Tokushima 770-8506, Japan

Introduction

It is known that $pyro-Mg_{2}V_{2}O_{7}$ and $ortho-Mg_{3}V_{2}O_{8}$ show the highest and lowest catalytic activity for the oxidative dehydrogenation of propane among magnesium vanadates, respectively. However, in our recent study [1], it has been found out that $ortho-Mg_3V_2O_8$ is more stable than $pyro-Mg_2V_2O_7$ for the redox involving abstractioninsertion of the lattice oxygen. Thus it is necessary that the activity of $Mg_3V_2O_8$ should be improved by enhancing the mobility of the lattice oxygen. In the present study, palladium cation (Pd²⁺) was incorporated into $Mg_3V_2O_8$ in order to enhance the activity and redox nature of palladium species in the catalyst was analyzed by XAFS.

Experimental

Magnesium ortho-vanadates doped with Pd²⁺, which are described as X%Pd-ortho-MgVO, were prepared from Mg(OH)₂, Pd(NO₃)₂ and NH₄VO₃. Fixed-bed continuous flow reactor operated at atmospheric pressure was employed for the catalytic activity tests. The standard reaction conditions were as follows: W=0.5 g, T=723 K, $P(C_3H_3)=14.4$ kPa and $P(O_3)=4.1$ kPa diluted with helium, and F=30 ml min⁻¹. X-ray absorption fine structure (XAFS) near Pd K-edge was measured (6.5 GeV) with a storage ring current of approximately 400 mA at the High Energy Research Organization. The X-rays were monochromatized with Si(311) at NW-10A station. The absorption spectra were observed using ionization chambers in a transmission mode.

Results and Discussion

The catalytic activities for the oxidative dehydrogenation of propane on 5%Pd-ortho-MgVO were measured for 6 h on-stream. At rather shorter time-onstream (0.75 h), the conversion of propane and the selectivity to propylene on 5%Pd-ortho-MgVO were 11.8 % and 61.4 %, respectively. With the incorporation of Pd^{2+} into $Mg_{2}V_{2}O_{3}$, the remarkable improvement of the yield of C_3H_6 from 3.0 % on Mg₃V₂O₈ to 7.2 % on 5%Pdortho-MgVO was observed. Furthermore, it was found out that the catalytic activity on 5%Pd-ortho-MgVO was greater than that on Mg₂V₂O₇ (C₃H₆ yield=6.1 %), which is the most active catalyst among magnesium vanadates.

Unfortunately, the conversion of C_3H_8 and the selectivity to C₂H₆ on 5%Pd-ortho-MgVO decreased to 6.7 and 33.6 %, respectively, with progressing time-onstream. However re-oxidation with oxygen (25 ml min⁻¹) for 1 h at 723 K of the deactivated 5%Pd-ortho-MgVO resulted in the regeneration of the activity similar to that on fresh 5%Pd-ortho-MgVO.

In order to check the redox nature of Pd species in 5%Pd-ortho-MgVO during the reaction and re-oxidation, XAFS were employed and Fourier transformation of XAFS of 5%Pd-ortho-MgVO ((A) before reaction, (B) after the reaction and (C) after the re-oxidation) was described in Fig. 1.

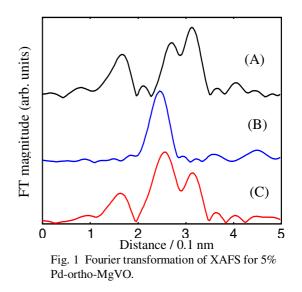


Fig. 1 reveals that Pd species in 5%Pd-ortho-MgVO before the reaction, after the reaction, and after the reoxidation was Pd²⁺, Pd⁰ and a mixture of Pd²⁺ and Pd⁰, respectively, indicating that redox cycle with Pd species proceeds favorably during the reaction to enhance the catalytic activity.

Reference

[1] S. Sugiyama et al., J. Ceramic Soc. Jpn., 115, 667 (2007).

* sugiyama@chem.tokushima-u.ac.jp