EXAFS analysis of activity site for glycerol hydrogenolysis reaction

Shuichi KOSO^{*1}, Akira Shimao¹, Tomohisa Miyazawa¹ Kazu OKUMURA², Kimio KUNIMORI¹, Keiichi TOMISHIGE¹ ¹Institute of Materials Science, Univ. of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan ² Department of Materials Science, Tottori Univ., Koyama-cho, Minami, Tottori 680-8552, Japan

Introduction

Utilization of biomass as a renewable raw material will gain importance in the industrial production of chemical substances for sustainability and as a substitute for petroleum for energy production. Terminal-diols, which have a linear carbon-carbon chain and carbons at both edges with the OH group have been used as monomers for production of polyesters and polyurethanes. Attempts have been carried out for the production of terminal-diols from renewable resources. Recently, our group has found that the Rh–ReO_x/SiO₂ catalyst shows high activity for glycerol hydrogenolysis, and the catalyst is effective for synthesis of 1,3-propandiol. In this study, we attempt to know the catalyst's fine structures. That is why we carried out extended X-ray absorption fine structure (EXAFS) as a characterization.

Experimental

Rh-ReO₂/SiO₂ catalyst was prepared using the sequential (two-step) impregnation method. Firstly RhCl₃·3H₂O aq. was impregnated to SiO₂ and dried catalyst at 383 K for 12 h. Secondary, NH₄ReO₄ aq. was impregnated Rh/SiO₂ catalyst and then after dried at 383 K for 12 h, calcined at 773 K in air for 3 h. The resultant catalyst is denoted as Re/Rh. The catalyst was pressed into self-supporting 7 mm-diameter wafers under atmosphere, followed by the treatment, with H₂ at 393 K for 1 h in the cell. We also measured the EXAFS of the catalysts after the reaction of glycerol. After the reaction, the H₂ pressure was decreased to some extent and the autoclave was opened in a glove box filled with nitrogen. The used catalysts, after separation, were transferred again to the measurement cell. Re L_3 -edge EXAFS spectra was measured by transmission mode at room temperature. After back ground subtraction, k^3 weighted EXAFS functions were Fourier transformed into R space and the one or two-shell fitting were analyzed by curve fitting.

Results and Discussion

Figure 1 shows Fourier transform of Re L_3 -edge EXAFS oscillations of various catalysts after H₂ reduction. The FT of Re powder and NH₄ReO₄ is also shown as a reference for Re-Re and Re-O, respectively. For both catalysts, peaks between 0.15 and 0.30 nm were observed in the FT; they are assignable to the Re–O and Re–Rh

bond. Table 1 lists their curve fitting results. From the result of Fourier transform of k^3 -weighted Re L_3 -edge EXAFS of Rh–ReO_x/SiO₂, samples after H₂ reduction and after the glycerol hydrogenolysis reaction sample are suggested almost same conditions. The catalyst in the glycerol hydrogenolysis reaction is reduced by H₂ gas in the autoclave. From the Re–Rh bond which was observed in the EXAFS of Rh–ReO_x/SiO₂, Re and Rh atoms are relatively near and interacts between Re and Rh. In addition, the two Re–O bonds were also observed in the Rh-ReO_x/SiO₂. From this result, it was suggested that Re was not reduced completely in the reaction.

Fig.1 Results of Fourier transform of k^3 -weighted Re L_3 -edge EXAFS oscillation of Rh-ReO₄/SiO₂ after the H₂ reduction and glycerol hydrogenolysis reaction. The results of ReO₂, NH₄ReO₄ and Re powder are also shown as a reference.

Table 1 Curve fitting of Re L_3 -edge EXAFS of various catalysts.

Catalyst	Pretreatment	Shells	CN	$R / 10^{-1} \text{ nm}$
Rh-ReO _x /SiO ₂ ^a	reduction	Re-Rh	2.6±0.6	2.65±0.007
		Re-O	1.1±0.3	2.06±0.034
		Re-O	2.0±0.9	2.31±0.013
Rh-ReO _x /SiO ₂ ^a	after the	Re-Rh	2.8±0.9	2.67±0.007
	glycerol	Re-O	1.2±0.7	2.07±0.010
	reaction	Re-O	2.1±1.3	2.29±0.010
ReO ₂	-	Re-O	2.0	1.73
NH ₄ ReO ₄	-	Re-O	4.0	1.74
Re powder	-	Re-Re	12	2.75
^a D /D1 1/0				

 a Re/Rh = 1/2

* s-sk_0513@ims.tsukuba.ac.jp