# XMCD study on Co-Pt films with giant perpendicular magnetic anisotropy

Tomohiro GOTO, Takayoshi JINNO, Yoshimasa NAKAMURA, Mitsunori TOYODA, Osamu KITAKAMI and Mihiro YANAGIHARA\* Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan

## **Introduction**

Co-Pt films deposited on Ru seed layers, with c-axis perpendicular to the film plane, showed a giant uniaxial magnetic anisotropy energy (MAE),  $K_{u}$ , especially when the film thickness was less than 10 nm [1]. The second order energy term of uniaxial anisotropy,  $K_{u2}$ , of these films was particularly small, and  $K_u$  was almost determined by the first order energy term,  $K_{ul}$ ,  $(K_u = K_{ul} +$  $K_{u2}$ ). Moreover the values of  $K_{u1}$  and  $K_{u2}$  of Co-Pt films varied significantly with the seed layer materials used [2]. Our results suggested that the values of  $K_{u1}$  and  $K_{u2}$  were mostly related to the c/a ratio and the volume of the hcp Co-Pt lattice,  $V_{\text{lattice}}$ , due to the epitaxial growth of these films on Ru, or other seed layers.  $K_{u2}$  decreased as the c/aratio decreased. However,  $K_{u1}$  increased significantly as the c/a ratio decreased, resulting in an increase in  $K_{\mu}$ . In the present work, we study spin and orbital magnetic moments of Co in Co-Pt films by means of XMCD spectroscopy in order to elucidate the origin of giant MAE.

#### **Experimental**

Co-Pt films were deposited on SiO<sub>x</sub>/Si substrates by cosputtering Co and Pt using an UHV DC-magnetron sputtering system. Ru films were used as standard seed layers. No substrate heating was carried out during the deposition process. The value of  $K_u$  (= $K_{u1}+K_{u2}$ ) was obtained by subtracting the shape anisotropy  $2\pi M_s^2$  from the value measured by torque magnetometry. The XMCD experiment was carried out at AR-NE1B using an absorption apparatus equipped with a permanent magnet which can generate a maximum field of 1 T. Co $L_{23}$ MCD spectra were measured for each sample at grazing angles of incidence of 15 and 90 deg.

#### <u>Results</u>

Figure 1 shows the  $K_u$ , crystal axis ratio c/a, and lattice volume  $V_{\text{lattice}}$  for hcp-Co<sub>86</sub>Pt<sub>14</sub> perpendicular films deposited on Ru seed layers, as a function of the film thickness,  $\delta$ . As  $\delta$  decreases, c/a decreases and  $V_{\text{lattice}}$ increases due to the epitaxial constraint of Co-Pt by Ru. This lattice deformation significantly enhances the magnetic anisotropy  $K_{\mu}$ , and its value reaches  $2 \times 10^7$ erg/cm<sup>3</sup> at  $\delta = 2$  nm, being comparable to that of typical permanent magnets, such as  $L1_0$  FePt and Nd<sub>2</sub>Fe<sub>14</sub>B. This series of Co-Pt films are investigated by XMCD. The orbital moment of Co is determined by analyzing the XMCD spectra using the sum rules, as shown in Fig.2, where the orbital moment  $M_{orb}(\theta = 90)$  indicated by the squares is the moment along the c-axis (easy axis) and  $M_{\rm orb}(\theta = 15)$  is nearly perpendicular to the *c*-axis. From Fig.2, the orbital moment difference increases with decreasing thickness. Reminding that the MAE is roughly

proportional to the difference of these moments given as MAE  $\approx [M_{orb}(\theta = 90) - M_{orb}(\theta = 15)]$ , the XMCD data well explains the thickness dependence of MAE in Fig.1.



Fig. 1. The values of  $K_{u}$ , c/a, and  $V_{\text{lattice}}$  for hcp-Co<sub>86</sub>Pt<sub>14</sub> perpendicular films deposited on Ru seed layers, as a function of the film thickness,  $\delta$ .



Fig. 2. Magnetic orbital moments as a function of film thickness.

### **References**

- T. Shimatsu, et al., J. Appl. Phys. **99**, 08G908 (2006);
  T. Shimatsu, et al., IEEE Trans Magn. **43**, 2995 (2007).
- [2] H. Sato, et al., IEEE Trans Magn. 43, 2106 (2007).
- \* m.yanagi@tagen.tohoku.ac.jp