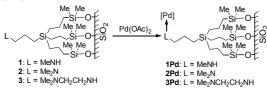
NW10A/2009G048


EXAFS study of palladium complex catalysts immobilized on silica via a tripodal linker unit with amino groups

Norihisa FUKAYA, Masae UEDA, Syun-ya ONOZAWA*, Kyoko K. BANDO, Toshiyasu SAKAKURA, Hiroyuki YASUDA* National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Introduction

Immobilization of molecular catalysts via linkers on inorganic oxide supports is a promising strategy for facilitating the separation of catalysts from reaction mixtures and for assisting the catalyst recycling process. We have recently found that the amino palladium catalysts immobilized on a silica support via a tripodal linker unit (**1Pd–3Pd**) show high catalytic performance for the Suzuki-Miyaura coupling reaction (Scheme 1). In this study, Pd *K*-edge EXAFS measurements were performed to explore the local structure of palladium of **1Pd–3Pd**.

Scheme 1

Experimental

Pd *K*-edge extended X-ray absorption fine structure (EXAFS) measurements were carried out at the NW10A beamline at the Photon Factory Advanced Ring (PF-AR) in the IMSS-KEK. All spectra were measured using a Si(311) double-crystal monochromator in transmission mode at room temperature. Analysis of EXAFS data was conducted using the commercially available analytical program REX2000 (Rigaku Co.).

Results and Discussion

Figure 1 shows the Fourier transforms (FT) of the k^3 weighted EXAFS spectra for the catalysts and the reference materials, including [Pd(NH₂)₄]Cl₂, Pd(OAc)₂, and Pd foil. A peak around 2.5 Å in the spectrum of the Pd foil, assigned to scattering from the nearest neighbor palladium atoms in a metallic palladium cluster, was not observed in the spectra of 1Pd. The FT profiles of these samples were similar to those of $[Pd(NH_{a})_{4}]Cl_{2}$ and Pd(OAc), consisting of an isolated palladium atom with a square planar PdE_4 (E = N or O) structure locating Pd–E at the distance of 2.02 or 2.03 Å, respectively [1,2]. Because the parameters associated with the phase shift function and backscattering amplitude of Pd-N are similar to those of Pd-O, curve-fitting analysis of the EXAFS spectra cannot distinguish between nitrogen and oxygen coordinated to palladium. Curve-fitting analysis

of the first shell in the FT of EXAFS for the catalysts **1Pd–3Pd** was carried out using parameters for Pd–N scattering extracted from $[Pd(NH_3)_4]Cl_2$ (Table 1). The optimum fitting results for **1Pd–3Pd** were 3.6–3.7 for the coordination numbers (CN) and around 2.02 Å for the distance (*r*). These results indicated that palladium was most likely surrounded by four nitrogen and/or oxygen atoms, in other words, the palladium was loaded onto the amino-functionalized silica surfaces **1–3** as palladium complexes, without aggregating to form palladium particles.

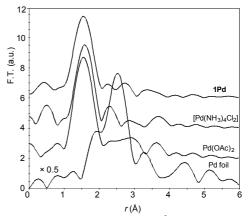


Figure 1: Fourier transforms of the k^3 -weighted Pd *K*-edge EXAFS spectra for the **1Pd** and [Pd(NH₃)₄]Cl₂, Pd(OAc)₂, and Pd foil, as reference materials.

Table	1:	Curve-fitting	results	of	Pd	K-edge	EXAFS		
spectra for the catalysts 1Pd-3Pd ^{<i>a</i>} .									

spectru ior	the cuturys	SIIU OIU.		
Catalyst	CN^b	$r (\text{\AA})^c$	$\Delta E (eV)^d$	$R(\%)^e$
1Pd	3.6 ± 0.6	2.03 ± 0.02	-5.4 ± 3.0	0.6
2Pd	3.7 ± 0.9	2.02 ± 0.02	-6.5 ± 3.0	1.7
3Pd	3.7 ± 0.5	2.01 ± 0.02	-0.4 ± 3.5	0.9

^{*a*} The Debye–Waller factor was fixed at 0.03 Å for all analyses. ^{*b*} Coordination number of Pd-E (E = N or O).^{*c*} Radial distance of E from Pd. ^{*d*} Difference in the edge energy between a reference compound and the catalyst. ^{*c*} R = $\sum (k_{\chi_{obs}}^2 \cdot k_{\chi_{ods}}^3)^2 \div \sum (k_{\chi_{obs}}^3)^2 \times 100.$

References

 B. N. Z. Dickison, Kristallogr. A88, 281 (1934).
S. D. Kirik, R. F. Mulagaleev, A. I. Blokhin, Acta Crystallogr., Sect. C, C60, m449 (2004).

* s-onozawa@aist.go.jp , h.yasuda@aist.go.jp