XAFS Study of Different Size Au Nanoparticles-doped TiO₂ Nanocomposite Photocatalytic Films Prepared by Sol-Gel Method

Chihiro YOGI^{*1}, Kazuo KOJIMA¹, Yasuhiro INADA¹, Alessandro MARTUCCI² and Tsun-Kong SHAM³ ¹Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

²University of Padova, Via Marzolo, 9, 35131 Padova, Italy

³University of Western Ontario, London, Ontario N6A 5B7, Canada

Introduction

Au nanoparticles (AuNPs) are known to enhance a photocatalytic activity with suppressing recombination of photo-generated electron-holes in a photocatalyst [1]. On the other hand, we have found that AuNPs affect morphology of a host material like TiO_2 during heattreatment of a sol-gel process, resulting in an improvement in the activity [2]. In this paper, we report a size effect of AuNPs on morphology and structure of TiO_2 studied by XAFS measurements.

Experimental section

AuNPs were synthesized by a chemical reduction of Au^{3+} aqueous solution with ethanol solution of $NaBH_4$ and stabilized with polyvinylpyrrolidone. Different reducing rates produced AuNPs of 2.0±0.7 and 7.9±3.2 nm in diameter. These AuNPs were dispersed in a TiO₂ sol solution followed by coating on a quartz substrate, and annealed at 500 °C [3]. Finally, we obtained three types of films: TiO₂, smaller AuNPs-doped TiO₂ (sAuTiO₂), and lager AuNPs-doped TiO₂ (LAuTiO₂).

Photocatalytic and adsorption abilities were evaluated using methylene blue aqueous solution. XAFS measurements were carried out at a BL-12C beamline of Photon Factory, Japan, for Ti-*K* in FY mode and at a SGM beamline of Canadian Light Source for Ti- $L_{3,2}$ and O-*K* [4].

Results and discussion

Ti *K*-edge XANES spectra in the pre-edge region are shown in Figure 1. All spectra had four bands: A_1 band (quadrupolar $1s \rightarrow 3d$ (t_{2g}) transitions), A_3 band (dipolar transitions of $1s \rightarrow 3d$ (t_{2g})-4p hybridized states in nature plus a little $1s \rightarrow 3d$ (e_g) quadrupolar component), B band (pure dipolar transitions of $1s \rightarrow 3d$ (e_g)-4p hybridized states), and A_2 band (five-coordinated Ti atom). A_2 was shown to relate to the mean particle diameter of TiO₂, that is, the A_2/A_3 integrated intensity ratio was increased with decreasing particle size [5]. The A_2/A_3 ratio in the present study is also shown in Figure 1 and sAuTiO₂ ($A_2/A_3 =$ 0.794) had the highest value, followed by LAuTiO₂ (0.646) and TiO₂ (0.554), indicating the smaller AuNPs doping into TiO₂ film increased the ratio of fivecoordinated Ti sites.

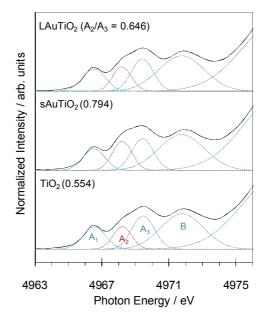


Figure 1. Ti-*K* edge XANES spectra of the films (pre-edge region) and their deconvolution.

The amount of MB in the dark (adsorption ability) and MB degradation rate under 365-nm UV irradiation (photocatalytic activity) of the films were evaluated. The results showed that both the adsorption and photocatalytic abilities were enhanced with increasing the A_2/A_3 ratio and the amount of adsorbed MB was proportional to the A_2/A_3 ratio, indicating the five-coordinated Ti site works as an adsorption site in these series of the films, leading to the improvement in the photocatalytic activity. As for Ti- $L_{3,2}$ and O-K edge XANES spectra, there were little difference in those spectra detected by surface-sensitive total electron yield and bulk-sensitive FY mode.

References

P.V. Kamat et al., J. Phys. Chem. B, **105** (2001) 11439.
C. Yogi et al., J. Phys. Chem. C, **115** (2011) 6554.
A. Martucci et al., Adv. Funct. Mater., **17** (2007) 347.
T.K. Sham et al., J. Mater. Chem., **19** (2009) 6804.
V. Luca et al, J. Phys. Chem. B, **102** (1998) 10650.

* cyogi@fc.ritsumei.ac.jp