Investigation of electronic states of infinite-layer SrFeO₂ epitaxial thin films by X-ray photoemission spectroscopy

Akira CHIKAMATSU^{*1}, Toshiya MATSUYAMA¹, Yasushi HIROSE^{1,2}, Hiroshi KUMIGASHIRA³, Masaharu OSHIMA³, Tetsuya HASEGAWA^{1,2} ¹Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan ²Kanagawa Academy of Science and Technology, Kanagawa 213-0012, Japan ³Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan

Introduction

Recently, an antiferromagnetic (AFM) insulator, SrFeO₂ (Fe²⁺: d^6 , S = 2), in which FeO₄ square-planes composed of corner-sharing FeO₆ octahedra are alternately stacked with Sr layers, was synthesized via solid-phase reduction of SrFeO_{2.875} using CaH₂ [1]. The Fe spins in SrFeO₂ are three-dimensionally (3D) ordered in an antiparallel way, with a Néel temperature of $T_{\rm N} = 473$ K, despite the two-dimensional crystal structure. Firstprinciples density functional theory (DFT) calculations for SrFeO₂ suggested that down-spin Fe 3d electrons occupy the nondegenerate d_{z^2} level rather than the degenerate d_{xz} or d_{yz} levels [2]. This electronic picture reasonably explains the 3D AFM ordering, the absence of Jahn-Teller instability, and the magnetic anisotropy with an in-plane easy axis. To prove the proposed band model, a direct spectroscopic approach to the electronic structure of SrFeO, is highly desirable. Here, we report soft X-ray photoemission spectroscopic (PES) studies of singlecrystal epitaxial thin films of SrFeO, prepared via solidphase reduction of SrFeO₂₅ precursor films grown by pulsed-laser deposition (PLD).

Experiment

Epitaxial thin films of SrFeO_{2.5} were grown on SrTiO₃ (001) substrates by PLD method. These precursor films were embedded with CaH₂ in an evacuated Pyrex tube in an Ar-filled glove box. The tubes were sealed in vacuum and then kept at 280°C for 24 hours. X-ray diffraction for structural characterization. was used PES measurements were carried out at beamline 2C of the Photon Factory, KEK. The PES spectra were taken with an energy resolution of ~0.10-0.25 eV at a photon-energy range of 600-1000 eV. The Fermi levels of the samples were referred to that of Au foil in electrical contact with the samples.

Results and Discussion

Figure 1 shows the valence-band PES spectrum of the reduced SrFeO₂ film. First-principles DFT calculations predict that the valence band of SrFeO₂, which is in the mixed states of Fe 3*d* and O 2*p*, spreads from the binding energies (E_b) of ~7 eV to ~0 eV [2]. The experimentally observed valence band in Fig.1 is broader and extends to the higher E_b side than in the case of the theoretical valence band. However, as can be seen from the close-up

spectrum near the Fermi level $(E_{\rm F})$ (the inset in Fig.1), the density of states (DOS) begins to rise just below $E_{\rm F}$, consistent with the DFT results [2].

According to DFT calculations [2], the Fe 3d partial DOS in the valence-band region consists of three major components: a mixture of up-spin $3d_{x_{2-y_2}}$ and down-spin $3d_z$ located at $E_{\rm b} = 0-2$ eV, up-spin $3d_z$ at around 4 eV, and a superimposition of up-spin $3d_{xz} + 3d_{yz}$, $3d_{xy}$, and $3d_{x2-}$ $_{v2}$ located at 5–7 eV. In order to investigate the contribution of Fe 3d states to the valence band of SrFeO₂, we carried out Fe 2p-3d resonant PES. The PES intensities at 3-5 eV and 6.5-8.5 eV were resonantly enhanced, indicating that the corresponding energy states are contributed by the Fe 3d orbital. In contrast, the PES intensity from the $E_{\rm F}$ to ~1 eV was essentially independent of the photon energy, implying that the Fe 3dpartial DOS has a negligible weight near $E_{\rm F}$. Thus, it is reasonable to assume that the states below $E_{\scriptscriptstyle\rm F}$ are mostly contributed by oxygen. From a comparison of the PES results with the Fe 3d partial DOS calculated by the DFT method [2], we tentatively identify the peak at 3-5 eV as Fe $3d_{12}$ and that at 6.5–8.5 eV as Fe $3d_{12} + 3d_{12} + 3d_{13} + 3d_{14}$ $3d_{x^{2-y^{2}}}$.

Fig.1. Valence-band PES spectrum of reduced SrFeO₂ film. The inset shows the valence-band spectrum close to $E_{\rm F}$.

<u>References</u>

- [1] Y. Tsujimoto, et al., Nature **450**, 1062 (2007).
- [2] H. J. Xiang, et al., Phys. Rev. Lett. 100, 167207 (2008).
- * chikamatsu@chem.s.u-tokyo.ac.jp