Electronic Structure of Condensed Matter

O 2p partial density of states and local structures in oxide glasses

Shinya HOSOKAWA^{*1}, Hitoshi SATO², Kojiro MIMURA³, Naohisa HAPPO⁴, Shinji KOHARA⁵ ¹Hiroshima Institute of Technology, Hiroshima 731-5193, Japan ⁴Hiroshima University, Higashi-Hiroshima 739-0046, Japan ³Osaka Pref. University, Sakai, 599-8531 Japan ⁴Hiroshima City University, Hiroshima 731-3194, Japan ⁵SPring-8/JASRI, Hyogo 679-5198, Japan

Introduction

Oxide glasses have been widely used for human life for more than three thousands years, which are a group of non-crystalline materials of chemically stable. One of the typical oxide glasses is glassy silica (g-SiO₂), in which SiO₄ tetrahedra are connected with each other by cornersharing of O atoms, and form continuous networks (network former) similar to the crystal quartz. From previous structural studies [1], the Si-O-Si bond angle is about 150°, almost rectilinear. By mixing with another oxides as network modifiers, properties of oxide glasses can easily be controlled. For example, by adding B₂O₃, the glass becomes mechanically and chemically strong and called 'Pylex' glass. The structure of glassy B₂O₂ is based on B₃O₃ hexagonal ring, where the B-O-B bond angle is 120° [2], much smaller than that in g-SiO₂. Thus, the bond angles around the O atoms may be highly modified in Pylex glass.

In this paper, we report results of O 2p partial valenceband electronic density of states (DOS) of silica and Pyrex glasses obtained by O 1s soft x-ray emission spectroscopy (XES), which is very sensitive for the local structure around the O atoms, in particular for bond angles around the O atoms.

Experimental procedure

The XES measurements were performed at BL2C of PF-KEK at room temperature on SiO₂ and Pylex glasses, as well as SiO₂ crystal (quartz), which are commercially available. In the experiment, O K core absorption was carefully measured firstly by total emission yield method to obtain information on the O 2p partial conduction-band DOS. Then, O 1s XES spectra were measured at various incident photon energies from 530.3 to 560 eV.

Results and discussion

The XES spectra of crystal and glassy SiO_2 are very similar to ach other, indicating that the local structures around the O atoms remain mostly unchanged by amorphization. The XES spectra are depicted in Fig. 1 for SiO_2 (red) and Pylex (blue) glasses at various incident soft x-ray energies. As is clearly seen in the figure, the XES spectra of Pylex glass are very different from those of g- SiO_2 , in particular at the low incident photon energies. This finding suggests that the local structures around the O atoms in Pylex glass is highly modified from those in the SiO_2 network former as was expected. Theoretical analyses of these results are now in progress.

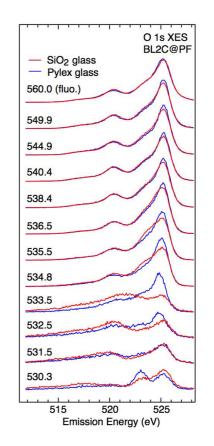


Fig. 1 O1s soft x-ray emission spectra of SiO₂ (red) and Pylex (blue) glasses.

References

[1] For example, S. Kohara and K. Suzuya, Phys. Chem. Glasses 43C, 51 (2002).

[2] F. L. Galeener, G. Lucovsky, and J. C. Mikkelsen, Jr., Phys. Rev. B 22, 3983 (1980).

* hosokawa@cc.it-hiroshima.ac.jp