Electronic Structure of Condensed Matter

Electronic structure change of Li_xK_{0.14}Mn_{1.43}[Fe(CN)₆]·6H₂O during Li insertion/extraction

Daisuke ASAKURA*¹, Masashi OKUBO¹, Yoshifumi MIZUNO¹, Tetsuichi KUDO¹, Haoshen ZHOU¹, Kenta AMEMIYA²

¹Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Prussian blue analogue (PBA) is a new-class electrode materials for Li-ion batteries. We have found that $K_{0.14}Mn_{1.43}$ [Fe(CN)₆] \cdot 6H₂O (MnFe-PBA) could store 0.9Li⁺ in the unit cell [1]. However, the redox reaction on the transition metals has not been clear. To element-selectively clarify the electronic structure change during Li insertion/extraction, we performed soft x-ray absorption spectroscopy (XAS) [2]. Charge-transfermultiplet (CTM) calculations [3] were also carried out to understand the experimental results [2].

Experimental

The samples of $K_{0.14}Mn_{1.43}[Fe(CN)_6] \cdot 6H_2O$ (MnFe-PBA, before Li insertion), $Li_{0.9}K_{0.14}Mn_{1.43}[Fe(CN)_6] \cdot 6H_2O$ ($Li_{0.9}MnFe-PBA$, fully Li-inserted state), and $Li_0K_{0.14}Mn_{1.43}[Fe(CN)_6] \cdot 6H_2O$ ($Li_0MnFe-PBA$ after Li extraction) were fabricated in the same manner of Ref. 1. The *ex situ* XAS measurements were carried out at BL-7A of the Photon Factory. The total electron-yield mode was employed. The energy resolution was $E/\Delta E \sim 1500$. The pressure was maintained at the order of 10^8 Torr. All the measurements were performed at room temperature.

Results and discussion

The Mn $L_{2,3}$ -edge XAS spectra for Li_xMnFe-PBA did not change regardless of the Li concentration x (not shown) [2]. CTM calculations including ligand-to-metal charge transfer (LMCT) revealed that the unchanged spectra were attributed to Mn²⁺ high-spin state with crystal-field splitting 10Dq = 0.8 eV. The small 10Dq is consistent with that Mn forms Mn(NC)_{6.6}(OH₂)_{δ} ($\delta < 2$) octahedron having a weak crystal-field splitting. Although the evaporation of the zeolitic and coordinating H₂O in vacuum cannot be neglected (i.e., formation of Mn(NC)_{6- δ}), the evaporation effect could not be significant because the small 10Dq cannot be largely different from the real state of Mn(NC)_{6- δ}(OH₂)_{δ}.

On the other hand, the Fe $L_{2,3}$ -edge XAS showed drastic changes during Li insertion/extraction (Fig. 1(a)). The spectral shapes of MnFe-PBA and Li₀MnFe-PBA are very similar to that of K₃[Fe(CN)₆] which is of the Fe³⁺ lowspin (LS) state with strong metal-to-ligand CT (MLCT) in addition to LMCT [4]. For Li_{0.9}MnFe-PBA, the peak at 706 eV of the t_{2g} orbital disappeared and the spectral shape was nearly the same as K₄[Fe(CN)₆] which is of the Fe²⁺ LS state with LMCT and strong MLCT [4]. Therefore, the Fe was reduced/oxidized by Li insertion/extraction. Furthermore, as shown in Fig. 1(b), we could reproduce those experimental spectra by CTM calculations including MLCT and LMCT [2]. The electronic structure parameters such as CT energies for both MLCT and LMCT were slightly different from those of K₃[Fe(CN)₆] and K₄[Fe(CN)₆] [4].

The bidirectional CT between Fe and CN should make the Fe-CN-Mn framework robust. In fact, MnFe-PBA could store 0.9Li⁺ even after 100 Li-insertion/extraction cycles [1], i.e., MnFe-PBA is highly stable against Li insertion/extraction. The present results well agree with the stability.

Figure 1: (a) The Fe $L_{2,3}$ -edge XAS spectra for Li_AMnFe-PBA. (b) CTM-calculated results for Fe³⁺ and Fe²⁺ LS states with MLCT and LMCT.

References

[1] M. Okubo et al., J. Phys. Chem. Lett. 1, 2063 (2010).

[2] D. Asakura et al., Phys. Rev. B, in press.

[3] F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. **62**, 111 (1993).

[4] R. K. Hocking et al., J. Am. Chem. Soc. **128**, 10442 (2006).

* daisuke-asakura@aist.go.jp