Structure-related thermoelectric properties of SrNbO_{3.4}

Photon Factory Activity Report 2010 #28 Part B (2011)

Wataru KOBAYASHI*^{1, 2}, Masaki MATSUSHITA³, Ichiro TERASAKI⁴, Akiko NAKAO⁵, Hironori NAKAO⁵ and Youichi MURAKAMI⁵ ¹University of Tsukuba, Ibaraki 305-8571, Japan ²JST PRESTO, Saitama 332-0012, Japan ³Waseda University, Tokyo169-8555, Japan ⁴Nagoya University, Nagoya 464-8602, Japan ⁵KEK-PF/CMRC, Ibaraki 305-0801, Japan

Introduction

Low-dimensional materials has a potential to be good thermoelectrics owing to their reduced thermal conductivity by phonon scattering and the enhanced thermopower by steep change in density of states at the Fermi level. We have studied quasi-one-dimensional (Q1D) Hollandite $Ba_{1,2}Rh_8O_{16}$ and found large power factor of 30 μ W/cmK² at 75 K comparing with that seen in Na_xCoO₂ at 300 K [1]. SrNbO_{3.4} with Nb^{4.8+} (4d^{0.2}) is known to be a good Q1D

SrNbO_{3.4} with Nb^{4.8+} (4d^{0.2}) is known to be a good Q1D conductor [2]. SrNbO_{3.4} (n=5) belongs to homologous series of Sr_nNb_nO_{3n+2}, and is derived from the three-dimensional network of SrNbO₃ perovskite structure by separating the NbO₆ octahedra parallel to the (110) planes and introducing additional oxygen. (see the inset of Fig. 1) We have grown single crystals of SrNbO_{3.4} and investigated structure-related thermoelectric properties performing synchrotron x-ray diffraction measurement.

Experiments

High-quality single crytals of SrNbO_{3.4} were grown by a traveling solvent floating zone method with a growth velocity of 10 mm/h in a mixed gas flow of Ar(97%) and H₂(3%) with 0.2 l/min. Large single crystals with a typical dimension of 5mm*5mm*1mm were successfully grown. Synchrotron powder x-ray diffraction measurements with wavelength of 0.7749 Å were carried out at the BL-8A at the Photon Factory, KEK, controlling the temperature from 80 to 300 K, and the structural refinements were performed by Rietveld analysis (RIETAN-FP).

The resistivity was measured by a four-probe method in a liquid He cryostat. Gold wires were carefully attached to the sample using silver paste (DuPont4922) as electrodes. The thermopower was measured using a steady-state technique in a liquid He cryostat with copperconstantan thermocouple to detect a small temperature gradient of about 1 K/cm.

Results and Discussion

As shown in Fig. 1, synchrotron x-ray diffraction pattern of ground single crystal was well fitted by orthorhombic symmetry (Pnnm, Int. Tables: A-58-1) with lattice parameters of a=3.988 Å, b=5.676 Å, and c=32.467 Å.

Fig. 2(a) shows the temperature dependence of the

resistivity. The magnitude is found to be 7, 110, and 840 m Ω cm for the *a*, *b*, and *c* axes, respectively showing the anisotropy of ~15 in the *ab* plane. The thermopower along *b* axis is -150 μ V/K, which is one order of magnitude larger than those of -15 and -25 μ V/K along *a* and *c* axes. In particular, the anisotropy in the thermopower appears at around 100 K, which relates to change of activation energy of the resistivity shown in Fig. 2(a). We observed a small modification of NbO₆ octahedra at around 100 K, which causes a dimensional crossover from higher-dimensional to quasi-one-dimensional electronic structure in SrNbO_{3.4} [3].

Fig. 1: X-ray powder diffraction pattern of SrNbO_{3.4} at 300 K

Fig. 2: (a) Resistivity and (b) thermopower of SrNbO_{3.4}

References

- [1] W. Kobayashi et al., Phys. Rev. B 79, 085207 (2009).
- [2] C. A. Kuntscher et al., Phys. Rev. Lett. 89, 236403 (2002).
- [3] W. Kobayashi et al., submitted.
- * kobayashi.wataru.gf@u.tsukuba.ac.jp