# Synthesis and magnetic property of DyMnO<sub>3</sub> nanoparticles in mesoporous silica

Takayuki TAJIRI\*<sup>1</sup>, Natsuki TERASHITA<sup>2</sup>, Hiroyuki DEGUCHI<sup>2</sup>, Masaki MITO<sup>2</sup>, Atsushi KOHNO<sup>1</sup>

<sup>1</sup>Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan

<sup>2</sup>Fuculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

## **Introduction**

The magnetic nanoparticles show many curious size effects due to finite size effect and changes of surface state and crystal structure etc. Multiferroic materials  $RMnO_3$  (*R*: rare earth) have strong coupling between magnetism and ferroelectricity. We are interested in the physical property for DyMnO<sub>3</sub> nanoparticles. DyMnO<sub>3</sub> exhibits the antiferromagnetic transition among the Mn spins at  $T_N \approx 40$  K. The ferroelectricity is attributed to lattice modulation accompanied by the antiferromagnetic order. [1] Mesoporous silica SBA-15 was used as a template to equalize the particle size in fabrication of DyMnO<sub>3</sub> nanoparticles. We report the synthesis of the DyMnO<sub>3</sub> nanoparticles in the pores of mesoporous silica SBA-15 and their magnetic property.

### **Experimental**

The DyMnO<sub>3</sub> nanoparticles were synthesized in the one-dimensional pores of SBA-15 with a diameter of about 8 nm by soaking the SBA-15 in a stoichiometric aqueous solution of Dy(CH<sub>3</sub>COO)<sub>3</sub>·4H<sub>2</sub>O and  $Mn(CH_3COO)_2 \cdot 4H_2O$ . And then, the soaked sample were dried and calcinated in an oxygen atmosphere. The powder XRD measurements for the DyMnO<sub>2</sub> nanoparticles using a synchrotron radiation X-ray diffractometer at BL-8B of Photon Factory. The incident X-ray energy was 18 keV. The magnetic properties of the DyMnO<sub>3</sub> nanoparticles were measured using a SQUID magnetometer (Quantum Design MPMS-5S).

### **Experimental results**

Figure 1 shows the background subtracted powder XRD pattern for the DyMnO<sub>3</sub> nanoparticles in SBA-15 at room temperature. The diffraction pattern exhibited some Bragg peaks, which indicated presence of DyMnO<sub>3</sub> and impurity phases, Dy<sub>2</sub>O<sub>3</sub> and Mn<sub>7</sub>SiO<sub>12</sub>, denoted by asterisk in Fig. 1. The average particle size of the DyMnO<sub>3</sub> nanoparticles was estimated to be about 9nm by the use of the Scherrer's equation for some Bragg peaks. The estimated particle size is consistent with the diameter of one-dimensional pore of SBA-15. The XRD pattern indicated successful synthesis of the DyMnO<sub>3</sub> nanoparticles with diameter of about 9nm in SBA-15.

Figure 2 shows the temperature dependence of the dc magnetic susceptibility for the DyMnO<sub>3</sub> nanoparticle in the pores of SBA-15. The appearance of irreversibility between field-cooled (FC) and zero-field-cooled (ZFC) susceptibilities below 25 K was attributed to blocking phenomena due to the superparamagnetism, since the non-linear susceptibility did not exhibit a critical

divergence at the temperature where hysteresis started between the FC and the ZFC susceptibility. The increase in both the FC and the ZFC susceptibility below 10 K were caused by the magnetic ordering of Dy moment  $(T_N^{Dy} = 9K)$  [2] in DyMnO<sub>3</sub> and the presence of paramagnetic compound Dy<sub>2</sub>O<sub>3</sub>. The magnetization curves exhibited hysteresis loop below blocking temperature and were reproduced by Langevin function. We observed the superparamagnetic behavior for DyMnO<sub>3</sub> nanoparticles with diameter of about 9 nm.



Fig. 1. Powder XRD pattern for DyMnO<sub>3</sub> nanoparticles in SBA-15. The asterisk symbols denote the Bragg peaks of impurity phase.



Fig. 2. Temperature dependence of FC and ZFC magnetic susceptibility for DyMnO<sub>3</sub> nanoparticle in SBA-15 at H = 100 Oe.

#### **References**

T. Goto et al., Phys. Rev. Lett. 92, 257201 (2004).
O. Prokhnenko et al., Phys. Rev. Lett. 98, 057206 (2007).

\* tajiri@fukuoka-u.ac.jp