13A, NE1A/ 2008G012,

Formation of the perovskite solid solution in the system of MgSiO₃-MnSiO₃ at high pressure and high temperature

Takaya NAGAI¹*, Tomoki ISHIDO¹, Lin LI¹, Yusuke SETO² Hokkaido Univ., Sapporo, Hokkaido 060-0810, Japan Kobe Univ., Kobe, Hyogo 657-8501, Japan

Introduction

It is accepted that magnesium silicate perovskite (MgSiO₃-pv) is the major constituent mineral in Earth's lower mantle. Natural minerals commonly form solid solutions and it is known that various cations are possibly incorporated into MgSiO₃-pv. Solubilities of FeO and CaO into MgSiO₃-pv have been mainly investigated so far. The system of MgSiO₃-CaSiO₃ has almost no perovskite solid solution in the whole lower mantle conditions. The solubility of FeO is only about 10 mol% at the uppermost lower mantle condition, but it is expected to increase greatly with depth.

Recently a new silicate perovskite with $MnSiO_3$ composition was reported [1]. Because the ionic radius of Mn^{2+} is between those of Fe^{2+} and Ca^{2+} , it should be interesting to evaluate the solubility of MnO into $MgSiO_3$ -pv at high pressure.

In this proposal, we performed high pressure and high temperature synthesis for solid solutions in the system of MgSiO₃-CaSiO₃ and identified the products phases by X-ray diffraction measurements.

Experimental

We firstly prepared gels containing desired amount of Mg, Mn and Si by a sol-gel method. Then we heated them at 1023 K for 3hours under the controled oxygen fugacity in order to keep Mn^{2+} . We finally made starting materials with desired chemical compositions (mol ratios: $MnSiO_3 : MgSiO_3 = 3 : 1, 1 : 1, 3 : 1 and 1 : 9$).

High pressure was generated by using a symmetry type DAC with 200 or 300 μ m culets diamond anvils. Sample was sandwiched between NaCl pellets and loaded into the DAC. NaCl works not only as a pressure transmitting materials but also as a thermal insulator. Small amount of gold powder was added to the sample as internal pressure marker. The diameter of a sample chamber in a pre-indented Re gasket is 80-100 μ m. The sample was heated for about 1 hour from both sides with an YLF laser at our laboratory or a YAG laser installed in BL13A or NE1A beam line. Experimental conditions were at the pressure range between 30 – 60 GPa and at the temperature range between 1300 (±200) – 2000 (±200) K.

X-ray diffraction patterns were measured by an angle dispersive method using an imaging plate (IP). Two dimensional IP data were integrated along Debye-Scherrer rings and converted to one dimensional data by the software IPAnalyzer [2].

Results and Discussion

X-ray diffraction patterns of all run products at high pressure suggest that a single phase of orthorhombic perovskite can be synthesized in each run product. The unit cell parameters increase almost linearly with MnSiO₃ contents as shown in Figure 1. This suggests that a complete perovskite solid solution can be formed in the system of MgSiO₃-MnSiO₃. These perovskite phases except for those with MgSiO₃ and (Mg_{0.9},Mn_{0.1})SiO₃ compositions transform into amorphous phase during decompression to an ambient pressure. It is very exiting report that MnSiO₃ is the first end member which forms a complete perovskite solid solution with MgSiO₃.

Figure 1. Variations of unit cell parameters of orthorhombic perovskites at about 50 GPa as a function of MnSiO₃ mol%. Red, blue and green symbols represent dimension of the a, b and c axis, respectively.

References

K. Fujino et al., Am. Mineralogist, 93, 653 (2008).
Y. Seto et al., Review High Press. Sci. & Tech., 20, 269 (2010).

* nagai@mail.sci.hokudai.ac.jp