Structural study of K48-linked tetraubiquitin

Tadashi SATOH^{1, 2, 3}, Eri SAKATA¹, Shunsuke YAMAMOTO¹, Yoshiki YAMAGUCHI^{1, 2}, Akira SUMIYOSHI¹, Soichi WAKATSUKI³, Koichi KATO^{1, 4*} ¹Nagoya City University, Nagoya, Aichi 467-8603, Japan, ²RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, ³Photon Factory, KEK, Tsukuba, Ibaraki 305-0801, Japan ⁴National Institute of Natural Sciences, Okazaki, Aichi, 444-8787, Japan

Introduction

K48-linked polyubiquitin chains serve as a signal for protein degradation by 26S proteasome through interactions using its I44 hydrophobic patches. The individual ubiquitin units of each chain are conjugated through an isopeptide bond between K48 and the C-terminal G76 of the preceding units. K48-linked polyubiquitin has been shown to undergo dynamic conformational changes depending on the association with target proteins. A "closed form" of K48-linked di-ubiquitin units, in which the I44 hydrophobic patches face each other, is transformed into an "open form" to recognize target proteins through the two proximate hydrophobic patches [1].

Here we performed crystallographic study of the tetra-ubiquitin (Ub_4) , and provided structural insight into its dynamic nature [2].

Experimental Procedures

To prepare a K48-linked Ub₄, ubiquitin was incubated with E1 and E2-25K. It has been reported that E2-25K catalyzes the formation of cyclic polyubiquitin as well as the non-cyclic variety *in vitro*. Interestingly, cyclic and non-cyclic species were obtained as major and minor products, respectively. Hence, we could solve the crystal structure of cyclic Ub₄ exclusively with native K48-linkages. Crystals of the Ub₄ were obtained in $C222_1$ form by vapor diffusion method. Diffraction dataset was collected at PF-AR NW-12A. The crystal structure was solved by molecular replacement. The refined model of the Ub₄ has an *R*-factor of 19.4% and R_{free} is 23.9% for data between 50.0 and 1.85 Å resolution (Fig. 1A).

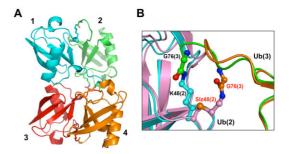


Fig. 1 Structure of K48-linked tetra-ubiquitin.

Results and Discussion

The crystallographic data clearly showed that the synthesized Ub4 is a cyclic form in which all K48 residues are conjugated to the C-terminal G76 through isopeptide bonds (Fig. 1A). The overall structure is quite similar to the previously reported crystal structure of the closed form of non-cyclic Ub₄. In contrast, the structure of the second and the third ubiquitin units connected through a native isopeptide bond is significantly different from the conformations of the corresponding linkage of the engineered non-cyclic Ub₄ (Fig. 1B). From these observations, we suggest that the flexible nature of the isopeptide linkage thus observed contributes to the structural arrangements of ubiquitin chains exemplified by the closed-to-open conformational transition of K48-linked di-ubiquitin, which is involved in binding to ubiquitin-associated (UBA) domain [1].

References

[1] S. Raasi et al., Nat Struct Mol Biol 12, 708 (2005).
[2] T. Satoh et al., *Biochem Biophys Res Commun* 400, 329 (2010).

*kkatonmr@ims.ac.jp