#### 17A, NW12A/2007G025

# Crystal structure of the inhibitor-free form of 1-deoxy-D-xylulose 5-phosphate reductoisomerase from *Plasmodium falciparum*

Tomonobu UMEDA, Nobutada TANAKA<sup>\*</sup>, Yoshio KUSAKABE, Yuki ODANAKA, Satoko MATSUBAYASHI, Yasuyuki KITAGAWA and Kazuo T. NAKAMURA School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan

### **Introduction**

Malaria is one of the world's most serious parasitic diseases. There are estimated 300-500 million cases and more than a million deaths from malaria each year. Human malaria is caused by infection with intracellular parasites of the genus *Plasmodium* that are transmitted by *Anopheles* mosquitoes. *Plasmodium falciparum* is the most lethal among the four species of *Plasmodium* that infect humans. The emergence of strains of malarial parasite resistant to conventional drug therapy, such as chloroquine, amodiaquine, and sulfadoxine-pyrimethamine, has stimulated searches for antimalarials with novel modes of action.

The non-mevalonate pathway of isoprenoid biosynthesis present in *Plasmodium falciparum* is known to be an effective target of antimalarial drugs. The second enzyme of the non-mevalonate pathway, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR, EC 1.1.1.267), catalyzes the NADPH and divalent cation (Mg<sup>2+</sup> or Mn<sup>2+</sup>)-dependent transformation of 1-deoxy-D-xylulose 5-phosphate into 2-*C*-mthyl-D-erythritol 4-phosphate.

To date several crystal structures of DXR from *Escherichia coli, Zymomonas mobilis, Mycobacterium tuberculosis,* and *Thermotoga maritima* have been reported. However, the crystal structure of *Plasmodium falciparum* DXR (PfDXR) itself has not yet been reported. Here we report the crystal structure of recombinant PfDXR.

#### <u>Experimental</u>

#### Crystallization

The expression and purification of PfDXR were performed as described [1]. Crystallization was carried out at 293 K by the hanging-drop vapour diffusion method. In the best case, a droplet was prepared by mixing equal volumes  $(2.0 + 2.0 \ \mu l)$  of the protein solution (5 mg/ml protein and 3 mM NADPH) and the reservoir solution (500  $\mu$ l) containing 20%(w/v) PEG3350 and 0.3 M potassium chloride in 0.1 M Tris-HCl buffer at pH 8.0. Rhomboidal crystals with typical dimensions of about 0.1 x 0.1 x 0.1 mm<sup>3</sup> could be grown in 1 week [1].

## X-ray data collection and structure determination

The crystals belong to a monoclinic space group *C*2 with cell dimensions of a = 168.89 Å, b = 59.65 Å, c = 86.58 Å, and  $\beta = 117.8$  deg. Assuming two subunits (one dimer) per asymmetric unit, we obtained a V<sub>M</sub> value of 2.03 Å<sup>3</sup>/Da, corresponding to a solvent content of 39 %. The data collection was performed at 100 K using an ADSC Q270 CCD detector with the synchrotron radiation of BL17A ( $\lambda = 1.00$  Å). The current best diffraction data from an inhibitor-free PfDXR crystal were collected up to 1.85 Å resolution.

The initial phase determination was carried out by the molecular replacement (MR) method using the coordinate set of *Escherichia coli* DXR dimer (PDB code: 10NN) as a search model. The phase determination was carried out using the program AMoRe from the CCP4 suite. Crystallographic refinement at 1.85 Å resolution was performed using the program REFMAC5.

## **Results and Discussion**

The overall structure of PfDXR is essentially similar to those of DXRs from other species. The subunit of PfDXR consists of two large domains, linker region, and a Cterminal domain. One of the large domains is responsible for NADPH binding, and the other provides the groups necessary for catalysis. Structural details of PfDXR will be published elsewhere.

#### **Reference**

[1] T. Umeda et al., Acta Crystallogr. F66, 330 (2010).

\* ntanaka@pharm.showa-u.ac.jp