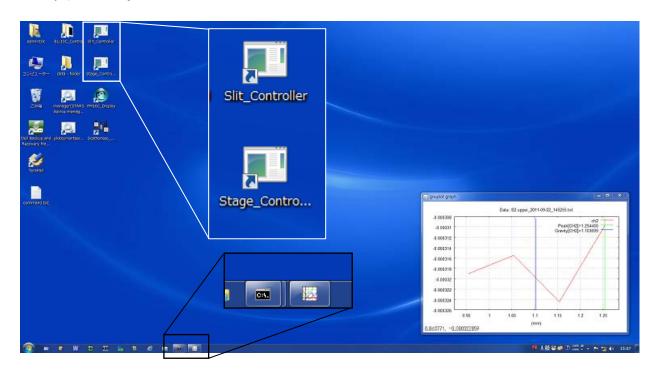
BL-10C 新制御ソフト 操作マニュアル


2011 年 10 月 6 日 Ver. 1.1 (KEK-PF 清水伸隆)

I. 操作準備

- (1) PC を起動します。
- (2) ログインします。

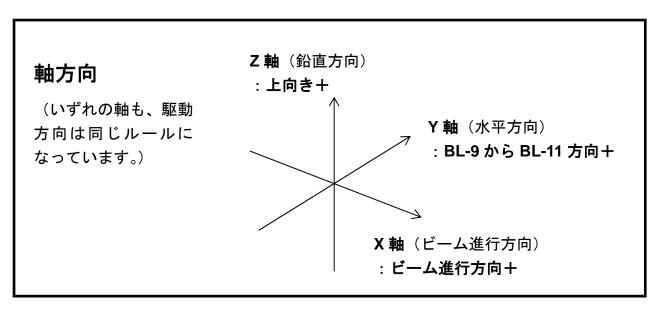
ID : admin10c PASS : admin10c


(3) ログインすると、タスクバーにコマンドプロンプトが 2 つ (manager (STARS device manager)、SHOWGRAPH) 最小化された状態で起動し、画面上に Gnuplot の Graph Window が表示されます。Gnuplot には、最後に(直前に)測定したデータが表示されているはずです。最小化されているコマンドプロントの Window はそのままで問題ありません。

(4) S2 スリットを操作するためには、画面上にある「Slit_Controller」のショートカットをダブルクリックします。画面上に、BL-10C Slit Controller が起動します。

また、それ以外のステージ(軽試料台、重試料台、PSPC、ビームストッパー)に関しては、「Stage Controller」から起動します。

Slit Controller


Stage Controller

- ① どちらも、左側がその軸を目的の位置に動かすためのツールで、右側はスキャンツールになっています。
- ② これまでは、軸を動かすためにはパルスで入力していましたが、新ソフトでは mm 単位で入力します。動かし方の説明は(6)以降で行います。
- (5) 信号経路が変更されたため、これまで利用していた 16CH のパルス表示器は使用できなくなりましたが、今後は mm 単位で動かすため基本的に必要ありません。これまでのパルス値との対応関係を確認したい場合は、PC デスクトップ上にある「PM16C_Display」のショートカットをダブルクリックして下さい。16CH のパルス値が別ウィンドウで表示されます。

Ch	軸名称		Ch	軸名称	
0	S2U	S2 スリット上刃	8	HSZ	重試料台 Z 軸
1	S2L	S2 スリット下刃	9	HSY	重試料台 Z 軸
2	S2H11	S2 スリット右刃	10	BSZ	ビームストッパーZ 軸
3	S2H09	S2 スリット左刃	11	BSY	ビームストッパーY 軸
4	S2Z	S2 スリットステージ Z 軸	12	PSPCZ	PSPC Z軸
5	S2Y	S2 スリットステージ Y 軸	13	PSPCY	PSPC Y軸
6	LSZ	軽試料台 Z 軸	14	chE	未使用
7	LSY	軽試料台 Y 軸	15	chF	未使用

※注意点

新ソフトで S2Z を+1mm 移動させた場合、「PM16C_Display」上で Ch4 の S2Z のパルス 値はマイナス方向に動きます。ソフト上で動作方向とリミット方向を変換しているためで、全く問題ありません。

● 各電流/電圧値のチャンネル

CH1: 4.52037287, CH2: 0.00000201, CH3: -0.12844181, CH4: -0.26228869, CH5: -0.00010617

CH	モニターしている強度	単位	設置位置など
1	Ring Current	$\times 10^2 \text{mA}$	
2	Ion Chamber	V	S2 スリット直下
3	Micro Ion Chamber 1	V	試料直下(試料での吸収量計測用)
4	Micro Ion Chamber 2	V	検出器前(BS 調整用)
5	PSPC	V	

● IC、MIC1、MIC2 を利用する前に

イオンチャンバー (IC)、マイクロイオンチャンバー (MIC) を使用する前には、まず高圧電源からのケーブル (赤色) (High Voltage、略して HV) や信号線 (黒色) を本体に接続します (IC は、常時接続されていますが、MIC は非使用時にはケーブルが抜かれていますので、接続して下さい。)。その上で HV に電源を入れますが、それぞれ別の電源となっていますので、使用するものだけ以下の番号の電源を ON して下さい。

①イオンチャンバー (IC) : 3番

②マイクロイオンチャンバー1 (MIC1) :5番

③マイクロイオンチャンバー2(MIC2):6番

実験終了後は、電源を OFF にして下さい。**電源 ON のまま、HV ケーブルを抜き差しする と感電して漏電します。**

● スキャンの出力データ

スキャン後の出力データは、Tab 区切りテキスト形式になっています。データ列は、左から、

入力值、絶対值、相対值、CH1、CH2、CH3、CH4、CH5

となっています。ファイルの Header を参照下さい。

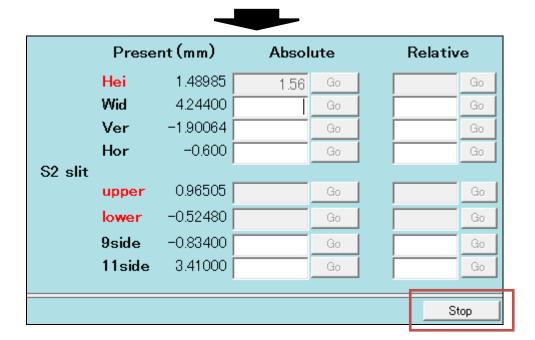
Ⅱ. 操作手順

(1) 軸の操作

Present:現在値を表示(mm 表示)

	Prese	nt (mm)	Absol	ute	Re	lative
	Hei	1.40100		Go		Go
	Wid	4.24400		Go		Go
	Ver	-1.90064		Go		Go
	Hor	-0.600		Go		Go
S2 slit						
	upper	0.92100		Go		Go
	lower	-0.48000		Go		Go
	9side	-0.83400		Gio		Go
	11side	3.41000		Gio		Go

Hei	スリットの開口量(鉛直方向)	仮想軸(S2U-S2L)
Wid	スリットの開口量(水平方向)	仮想軸(S2H11-S2H09)
Ver	スリットの開口中心(鉛直方向)	S2Z
Hor	スリットの開口中心(水平方向)	S2Y
Upper	上ブレードの位置	S2U
Lower	下ブレードの位置	S2L
0 1 1		001.100
9side	BL-9 側のブレードの位置	S2H09


	Pres	sent (mm)	Absolute	Relative
Heavy	Ver	6.40024	Go	Go
Sample	Hor	21.37000	Go	Go
Light	Ver	3.89600	Go	Go
Sample	Hor	-1.58400	Go	Go
PSPC	Ver	21.75000	Go	Go
. 0. 0	Hor	-3.00000	Go	Go
		_		
Beam	Ver	1.38290	Go	Go
Stopper	Hor	6.62730	Go	Go

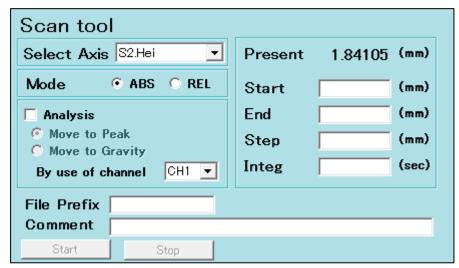
Shutter Stage	Ver	R-AXIS7 用 X 線シャッターの位置(鉛直方向)	HSZ
	Hor	(水平方向)	HSY
Light Sample	Ver	軽試料台の位置(鉛直方向)	LSZ
	Hor	(水平方向)	LSY
PSPC	Ver	PSPC の位置 (鉛直方向)	PSPCZ
	Hor	(水平方向)	PSPCY
Beam Stopper	Ver	BS の位置 (鉛直方向)	BSZ
	Hor	(水平方向)	BSY

① 絶対値駆動

「Absolute」の欄に入力して「Go」ボタンを押すと、<u>入力した値に向かって移</u> **動する**。

	Prese	nt (mm)	Absolute		Relativ	e
	Hei	1.40100	1.5€	Go		Go
1	Wid	4.24400		Go		Go
1	Ver	-1.90064		Go		Go
	Hor	-0.600		Go		Go
S2 slit		,				
	upper	0.92100		Go		Go

図の場合、Go するとスリットの鉛直方向の開口量が 1.401 から 1.56mm に変化する。動いている軸は、表示が赤色に変わる。スリットの Height (鉛直方向の開口量) を変更しているので、upper と lower を動かすことになるため、3 つの表示が赤色に変わっている。駆動中に止めたい場合は、Stop ボタンを押す。

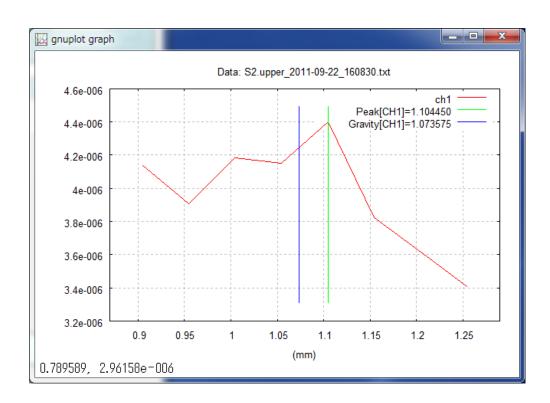

② 相対値駆動

「Relative」欄に値を入力して「Go」ボタンを押すと、<u>現在値から入力した値の</u> 分、移動する。

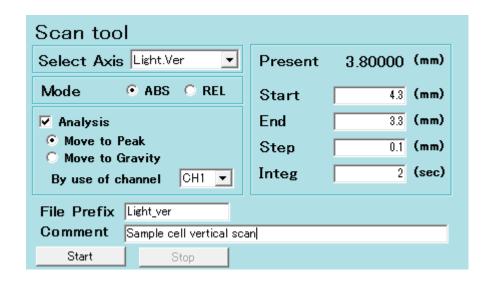
	Pres	sent (mm)	Absolute	Relative
Heavy	Ver	6.40024	Go	-0.5 Go
Sample	Hor	21.37000	Go	Go
		_		
Light	Ver	3.89600	Go	Go
Sample	Hor	-1.58400	Go	Go
		,		
DSDC	Ver	21.75000	Go	Go

図の場合、6.4 から-0.5 した 5.9 に移動する。<mark>駆動中に止めたい場合は、Stop ボタンを押す。</mark>

(2) スキャン操作

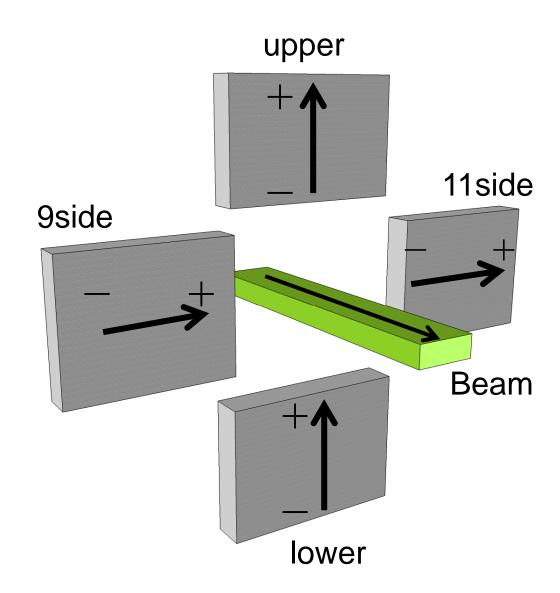

- ▶ 選択した軸を移動させながら、リングカレント(CH1)、イオンチャンバー(CH2)、 マイクロイオンチャンバー(CH3, 4)、PSPC(CH5)の値をプロットすることが出来ます。
- > スキャン範囲の指定を、「ABSolute (絶対値)」か「RELative (相対値)」表記の どちらで行うか選択できます。
- ▶ データは、自動的に Gnuplot Graph ウィンドウ上にプロットされていきます。
- ➤ スキャン終了後にデータを解析して、Peak(ピーク位置)や Gravity(重心位置) に自動的に移動させることも可能です。

- ➤ データは自動的に、C:\(\text{DATA}\) に保存されます(ファイル名には、自動的に測定 軸名と測定日時が記載されます)。
- <u>測定を停止する場合は、「Stop」を押す。Stopを押した場合は、その場で停止</u> します。
- ① 測定例 1: S2 スリット上刃を相対値入力でスキャンする場合


Scan tool			
Select Axis S2.upper	Present	1.05445	(mm)
Mode ○ ABS ⓒ REL	Start	1	(mm)
☐ Analysis	End	-1	(mm)
Move to Peak Move to Gravity	Step	0.1	(mm)
By use of channel	Integ	1	(sec)
File Prefix			
Comment S2 upper blade scan			
Start Stop			

- i. 「Select Axis」で「S2.upper」を選択
- ii. スキャンモードを「REL」に変更
- iii. 現在値から、±1mmの範囲を 0.1mm ステップでスキャンしたしたいので、図のように入力する。「Integ」とはデータ点 1 点あたりの積算時間で、通常は 1 秒で十分。
- iv. 「By use of channel」で、どのチャンネルの値をプロットさせるか選択する。今回は、イオンチャンバーなので CH2 を選択。また、スキャン後、解析した位置(ピーク位置や重心位置)に移動する必要は無いので、Analysis のチェックを外しておく。
- v. 「File Prefix」に希望のファイルヘッダーを入力しておくと、自動保存されるデータのファイル名の先頭に追加される。「Comment」欄にメモ書きしておくと、ファイル内にコメントとして追記される。 どちらも、空欄のままでも全く問題ない(ファイル名は、軸名と測定日時で自動生成される)。
- vi. 問題なければ、「Start」で測定を開始する。
- vii. S2. upper 軸は、測定開始点である 2.05445 に移動し、-0.1 ずつ移動して測定終了点である 0.05445 まで移動し、元の位置に戻ってスキャンを完了する。データは自動的に Gnuplot Graph ウィンドウに表示されていく(次ページ)。

- viii. データは、C:\(\fomage DATA\) にファイル名「S2.upper_2011-09-22_160830.txt (軸名_日付_時刻.txt)」で Tab 切り形式のテキストファイルとして自動保存されている。
- ix. Stop を押した場合は、その場で停止します。


② 測定例 2: 軽試料台を絶対値入力で鉛直方向にスキャンする場合

- i. 「Select Axis」で「Light.Ver」を選択
- ii. スキャンモードを「ABS」に変更

- iii. 4.3mm から 0.1mm ステップで 3.3mm までスキャンしたしたいので、図のように入力する。「Integ」とはデータ点 1 点あたりの積算時間で、通常は 1 秒で十分だが、データの S/N を考えて 2 秒にしてみた。
- iv. 「By use of channel」で、どのチャンネルの値をプロットさせるか選択する。今回はイオンチャンバーなので CH2 を選択。また、スキャン後、にピーク位置に移動して欲しいので、Analysis をチェックして「Move to Peak」にラジオボタンを合わせる。
- v. 「File Prefix」に希望のファイルヘッダーを入力しておくと、自動保存されるデータのファイル名の先頭に追加される。「Comment」欄にメモ書きしておくと、ファイル内にコメントとして追記される。 どちらも、空欄のままでも全く問題ない(ファイル名は、軸名と測定日時で自動生成される)。
- vi. 問題なければ、「Start」で測定を開始する。
- vii. Light. Ver 軸は、測定開始点である 4.3mm に移動し、一0.1 ずつ移動して測定終了点である 3.3mm まで移動し、元の位置に戻ってスキャンを完了する。データは自動的に Gnuplot Graph ウィンドウに表示されていく。 Analysis のチェックが ON なので、元の位置に戻った後でピーク位置に向かって移動する。
- viii. データは、C:\(\fomage DATA\) にファイル名「Light.Ver_2011-09-22_161520.txt (軸名_日付_時刻.txt)」で Tab 切り形式のテキストファイルとして自動保存されている。
- ix. Stop を押した場合は、その場で停止します。

★S2 スリットの駆動方向

