|
Photon Factory Activity Report 2010 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
| |
| 1,4-dihydroxy-6-naphthoate | 298 |
| |
| 4-helix bundle | 256 |
| 4H-SiC | 107 |
| |
| 6-6 type multi-anvil system | 228 |
| |
| α-Al2O3 | 195 |
| α-aminoadipate aminotransferase | 283 |
| a-CexRu100-x | 87 |
| abnormal aggregates | 262 |
| actinide | 32 |
| activated carbon | 55 |
| adsorption | 34, 56 |
| Ag-zeolite | 152 |
| aggregate | 67 |
| AgNbO3 | 115 |
| Al-doped | 107 |
| Al-doped ZnO | 158 |
| Al/Fe3O4 | 53 |
| Al2SiO5 | 194 |
| albebetin-thioredoxin | 274 |
| albite | 221 |
| AlGaN | 150 |
| alkali halide | 230 |
| alkaline phosphatase | 257 |
| allosteric regulation | 284 |
| alloy | 83, 153, 183, 234 |
| AlN | 52 |
| alternative biosynthetic pathway | 298 |
| ambient-pressure XPS | 77, 78 |
| amino acid film | 1, 4 |
| amyloid | 274, 275 |
| anatase | 73 |
| angiography | 305, 306 |
| anharmonicity | 183 |
| anti-trypanosomal drug design | 207 |
| antibacterial compound | 266 |
| antibody | 241 |
| antigen | 241 |
| antigorite | 231 |
| arc-plasma | 21 |
| archea | 255 |
| ARPES | 71, 73, 93, 94, 95, 170 |
| arsenate | 294 |
| arsenic (As) | 23, 34, 104, 135 |
| arsenite | 294 |
| asteroids | 208 |
| asymmmetric reaction | 1, 4 |
| atherosclerosis | 301 |
| Au LIII-edge XAFS | 74 |
| Au nanoparticle | 30, 74 |
| auger electron spectroscopy (AES) | 47, 48, 49 |
| auto-ionization | 126 |
| Avogadro constant | 216 |
| azobenzene | 138 |
| |
| β-prism fold | 268 |
| β-trefoil | 289 |
| β-vanadium bronze | 121 |
| βB2-crystallin | 262 |
| Ba2NdSn0.6Sb0.4O6-δ | 139 |
| bacterial pathogen | 270 |
| bacterial photosynthesis | 281 |
| BaFe2(As1-xPx)2 | 95 |
| bandpass filter | 310 |
| bandwidth controll | 91 |
| BaPrO3 | 126 |
| BaTiO3 | 92 |
| battery | 146 |
| (BEDT-TTF)(TCNQ) | 114 |
| (BEDT-TTF)2Ag(CF3)4(TCE) | 177 |
| bent crystal | 180, 181 |
| bentonite | 193 |
| benzimidazole | 35 |
| Bi(001) | 59 |
| Bi-layered perovskite-type oxides | 9 |
| Bi2Se3 | 101 |
| Bi2Te3 | 233 |
| Bifidobacteria | 286 |
| blebbing | 67 |
| block copolymer | 125, 136, 138, 149 |
| blur correction | 291 |
| boron nitride (BN) | 56 |
| boron spinel | 199 |
| bovine β -lactoglobulin | 246 |
| Bragg case | 181 |
| bragg condition | 310 |
| brass | 41 |
| bulk modulus | 230 |
| bystander effect | 288 |
| |
| C-face | 107 |
| C-type lectin | 301 |
| Caenorhabditis elegans | 295 |
| calcium (Ca) | 193, 258 |
| calcium fluoride (CaF2) | 38, 18 |
| cantilever | 72 |
| capacitor | 146 |
| capsular polysaccharide | 277 |
| carbon alloy | 83 |
| carbon dioxide (CO2) | 24, 255 |
| carbon nanotube | 16, 113, 146, 148, 174 |
| catalyst | 6, 10, 12, 15, 21, 24, 28, 30, 35, 36, 42, 74, 84, 86, 124, 134, 140, 142, 157, 168, 185, 307 |
| cathode | 8, 17, 119 |
| CaTiO3-KNbO3 | 235 |
| Cd1-xCaxO | 190 |
| CdMnCrTe | 112 |
| cell nucleus | 288 |
| cell wall | 270 |
| cell-cell communication | 288 |
| centrifugal condensation | 300 |
| cerium (Ce) | 24 |
| charge and orbital order | 127 |
| charge order | 121, 130, 177 |
| charge transfer interaction | 31 |
| chemical analysis | 58, 313 |
| chemical forms | 296 |
| chicken kidney | 210 |
| chirality control | 1, 4 |
| chitinase | 209 |
| chlorite | 229 |
| Cinnabar | 296 |
| circular dichoism | 1, 4 |
| clinical therapy | 272 |
| Clostridium botulinum | 289 |
| cluster | 104 |
| CMG | 111 |
| CMS | 111 |
| CO oxidation | 21, 68, 69, 77 |
| Co(II) complex | 5 |
| CO2 | 20 |
| CO2 hydrate | 237 |
| cobalt (Co) | 40 |
| cobalt hydroxide | 35 |
| cobalt oxide | 35, 97 |
| cocatalyst | 86 |
| coercivity | 188 |
| coincidence | 2, 47, 48, 49 |
| cold electron collision | 3 |
| colloidal crystallization | 300 |
| complication | 306 |
| compressiobility | 231 |
| confined crystallization | 120 |
| conformational change | 253 |
| contrast | 303 |
| contrast medium | 306 |
| copper (Cu) | 20, 39, 40, 81 |
| coprecipitation | 34 |
| coral | 261 |
| core-hole-clock | 63 |
| core-shell nanocatalyst | 28 |
| coronary spasm | 305 |
| corundum | 195 |
| CoSb3 | 227 |
| CotB2 | 290 |
| Cr-based diluted magnetic semiconductors | 112 |
| cryo electron microscopy | 254 |
| cryo-stoppoed-flow | 244, 245, 247 |
| crystal structure | 46, 128, 161, 178, 196, 232, 252, 253, 254, 259, 261 |
| crystal structure factor | 213 |
| crystalline polymer | 145 |
| crystallite | 15 |
| crystallization | 162 |
| CT | 291, 304 |
| cubic press | 228 |
| CuMFI | 22 |
| cupin | 277 |
| cyanide | 108, 175, 211 |
| cyclic | 243 |
| cycloocta-9-en-7-ol | 290 |
| cyclooctatin biosynthesis | 290 |
| cylindrical microdomain | 165 |
| cytochrome P450 | 253 |
| |
| D-serine | 210 |
| DAC | 237 |
| deformation | 174 |
| dehydratase | 210 |
| dehydration | 229 |
| de novo protein | 256 |
| density measurement | 219 |
| density resolution | 302 |
| depth profiling | 54 |
| depth-resolved SAXS | 169 |
| detector | 314, 315, 316 |
| developmental biology | 312 |
| diagnostic X-ray | 303 |
| diblock copolymer | 162, 163 |
| diffraction-enhanced imaging (DEI) | 302 |
| diluted magnetic semiconductor (DMS) | 112, 164 |
| dimerization | 256, 301 |
| dimethyl carbonate | 24 |
| direct methanol fuel cell (DMFC) | 185 |
| directed evolution | 253 |
| dislocation | 137 |
| dispersive NEXAFS | 68, 69 |
| diterpene cyclase | 290 |
| domain spacing | 125 |
| domain swapping | 256 |
| donor impurity | 123 |
| doping | 78, 83, 104, 107, 123, 129, 158, 171 |
| double-exchange model | 98 |
| double-perovskite-type | 139 |
| dredged area | 14 |
| drug design | 250, 279 |
| DSC | 267 |
| dual-Cu+ sites | 22 |
| DV-Xα | 56, 83 |
| dye-sensitized solar cell | 63 |
| DyMnO3 | 147 |
| dynamical diffraction | 180, 181 |
| |
| earth | 236 |
| ecotypes | 294 |
| edge state | 166 |
| EF-hand motif | 203 |
| electrical properties | 60 |
| electrocatalyst | 79 |
| electrochemistry | 10, 19, 65, 86 |
| electrode/electrolyte interface | 65 |
| electrolyte | 139 |
| electron collision | 3 |
| electron transfer | 27, 63, 263 |
| electron-dope | 129 |
| electronic correlation | 89 |
| electronic structure | 94, 95, 126 |
| elemental analysis | 313 |
| ellipsometer | 309 |
| Embryo imaging | 312 |
| enzyme | 255, 267, 277, 298 |
| epitaxial | 173 |
| epitaxial thin film | 102 |
| equation of state | 217, 230, 231 |
| erbium (Er) | 39 |
| estrogen | 305 |
| ethane adsorption | 22 |
| ethanethiol | 61 |
| ethylene glycol | 244, 245, 247, 248 |
| Ets1 | 287 |
| EUV multilayer | 309 |
| EXAFS | 5, 6, 7, 8, 9, 12, 13, 15, 16, 18, 21, 22, 23, 26, 29, 34, 35, 36, 38, 42, 45, 79, 104, 122, 123, 124, 134, 140, 150, 151, 152, 168, 183, 184, 187, 188, 190, 200, 307 |
| expansivity | 231 |
| extracelluar protein | 265 |
| |
| F4-TCNQ | 62 |
| Fddd | 136 |
| Fe-S | 219 |
| Fe3O4(100) films | 170 |
| Fe3Pt | 110 |
| FeCr | 188 |
| female | 305 |
| FeRhPd | 153 |
| ferrihydrite | 23, 34 |
| ferritin | 285 |
| ferroelectric oxide | 9 |
| ferroelectric random access memory (FeRAM) | 9 |
| ferroelectricity | 114, 115 |
| ferroelectrics | 92, 160 |
| ferromagnet | 186 |
| ferromagnetic semiconductor | 155 |
| fluctuation | 184 |
| fluorescence | 130, 316 |
| fluorescent X-ray CT | 304 |
| folding | 242, 246, 269 |
| forsterite | 195, 236 |
| fourier method | 206 |
| fractal | 144 |
| fragmentation dynamics | 2 |
| free electron | 158 |
| fullerene | 37 |
| functional organic molecule | 81 |
| |
| γ-ray irradiation effect | 262 |
| Ga-doped ZnO | 123 |
| GaAs | 213 |
| gadolinium (Gd) | 39 |
| galectin | 297 |
| GaN | 179 |
| gap junction | 288 |
| garnet | 131 |
| GASBOR | 246 |
| Ge-Te | 234 |
| gel | 5, 11, 167, 172 |
| gel formation | 67 |
| gelation | 156 |
| gelation process | 172 |
| geological disposal | 193 |
| geranylgeranyl diphosphate | 290 |
| geranylgeranyl reductase | 259 |
| GeTe | 155 |
| GISAXS | 165, 169 |
| glucomannan | 11 |
| glurtamate receptor | 279 |
| glutamate dehydrogenase | 284 |
| glycerol kinase | 207 |
| glyclysis | 286 |
| gold nanorod | 156 |
| goose-type lysozyme | 209 |
| gout | 272 |
| grain size | 239 |
| graphene | 64, 82, 166 |
| graphite | 83 |
| group II chaperonin | 254 |
| growth process | 156 |
| |
| H-protein | 251 |
| hair | 258 |
| HARP receiver | 306 |
| Hayabusa space mission | 208 |
| heat shock protein | 276 |
| heme import | 266 |
| hemoglobin | 249 |
| heterojunction | 52 |
| HfO2/Si | 58 |
| HfSiO/SiON | 51 |
| hidden phase | 127 |
| high pressure | 161, 198, 199, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240 |
| high resolution | 3 |
| high temperature | 191, 192 |
| high-k gate insulator | 54 |
| high-k gate stack | 58, 51 |
| high-pressure adaptation | 293 |
| high-pressure protein crystallography | 293 |
| high-resolution X-ray crystallography | 251 |
| high-speed position-sensitive monitor | 212 |
| hole conductivity | 126 |
| holmium (Ho) | 39 |
| homocitrate synthase | 283 |
| homoepitaxial film | 189 |
| homopolymer | 120 |
| host-guest | 31 |
| human secretory protein | 268 |
| hydrate | 215 |
| hydration | 55 |
| hydrgen bond | 241 |
| hydrgen bonding | 128 |
| hydride-shift | 280 |
| hydrodeoxygenation (HDO) | 36 |
| hydrodesulfurization (HDS) | 36, 307 |
| hydrogen (H) | 56, 197, 198 |
| hydrogen bond | 66 |
| hydrogen permeability | 43 |
| hydrous phase | 229 |
| Hyp protein | 252 |
| hyperaccumulator | 294 |
| hyperuricemia | 272 |
| hypoxia | 14 |
| |
| ice | 239 |
| imaging | 32, 33, 258, 291, 302, 304, 305, 306, 312 |
| immune responses | 203 |
| impurity | 104 |
| impurity effect | 96 |
| in situ | 69, 88, 191, 192 |
| in situ X-ray experiment | 228 |
| in situ XAFS | 10, 86 |
| in vitro | 257 |
| in-situ high temperature X-ray experiment | 194 |
| in-situ Mo K-edge EXAFS | 307 |
| in-situ observation | 222 |
| in-situ X-ray diffraction | 240 |
| incident beam stability | 212 |
| incommensurate phase | 160 |
| infinite-layer SrFeO2 | 102 |
| inhibitor | 272 |
| integrin | 265 |
| intein | 264 |
| intensity distribution | 212 |
| interface | 60, 64 |
| interface dipole | 51, 50 |
| interfacial band structure | 52 |
| interfacial reaction | 54 |
| interference fringe | 180, 181 |
| interferometer | 310 |
| intermediate | 242, 244, 245, 246, 247 |
| intermediate phase | 27 |
| intestinal bacteria | 296 |
| Invar effect | 183 |
| ionic solution | 55 |
| iridium (Ir) | 69 |
| iron (Fe) | 40 |
| iron acquisition | 266 |
| iron core | 285 |
| iron oxide | 191, 192 |
| iron titanate catalyst | 15 |
| iron uptake | 285 |
| iron-based superconductor | 93, 94, 95, 161 |
| IrSb3 | 224 |
| Isd system | 266 |
| isoprenoid | 259 |
| isotope | 40 |
| ITC | 267 |
| Itokawa regolith particle | 208 |
| |
| Jahn-Teller effect | 98 |
| |
| K48-linked | 243 |
| K2Cr8O16 | 143 |
| kainate | 279 |
| KBr | 230 |
| keV x-rays | 318 |
| |
| L-rhamnose isomerase | 280 |
| La0.4Ba0.6CoO3-δ | 204 |
| La0.6Sr0.4MnO3 | 106 |
| La1.5Ca0.54CoO4 | 97 |
| La2O2Fe2OSe2 | 161 |
| lactalbumin | 269 |
| lamellar | 154, 163, 167 |
| lanthanoid | 223 |
| lattice constant | 116 |
| lattice parameter | 141 |
| lattice spacing | 216 |
| Laue fringe | 131 |
| layer-by-layer deposition | 65 |
| layered hydroxide | 20 |
| lectin | 261, 268, 282, 289 |
| LED | 150 |
| Li-ion battery | 8, 44, 108, 119, 178, 218 |
| LixFePO4 | 119 |
| light-harvesting complex | 196, 281 |
| LiNbO3 | 240 |
| LiNiO2 | 157 |
| liquid | 219 |
| liquid crystal | 138, 176 |
| liquid-liquid transition | 234 |
| liquid-phase reduction | 42 |
| lithium borohydride | 218 |
| lithium fluoride (LiF) | 13, 18, 38 |
| local and electronic structures | 43 |
| local structure | 9, 103, 123, 184, 190, 200 |
| long period | 145 |
| long range ordering | 27 |
| low temperature | 237 |
| low-dimensional material | 133 |
| low-molecular weight gelator | 172 |
| LOX-1 | 301 |
| LSTO | 88 |
| lysine biosynthesis | 283 |
| lysozyme | 205, 300 |
| |
| μ-XANES | 294, 295 |
| magnesium fluoride (MgF2) | 38 |
| magnetic moment | 110 |
| magnetic ordering | 97 |
| magnetic semiconductor | 171 |
| magnetism | 109 |
| magnetite | 206 |
| malaria | 250 |
| manganese oxide | 106, 127 |
| manganite | 98, 130 |
| mantle | 236 |
| mapping | 216, 258 |
| matrix vesicles | 257 |
| mechanical stretching | 149 |
| melting behavior | 163 |
| MEM | 197 |
| membrane protein | 264, 271, 281 |
| menaquinone | 298 |
| Menger sponge | 144 |
| mercaptobenzoic acid | 81 |
| mesophase | 182 |
| mesoporous Cr and Ti mixed oxides | 26 |
| mesoporous silica | 168 |
| metal complex | 5, 100 |
| metal-insulator transition | 88, 90, 91, 106, 130, 143 |
| metallization | 118 |
| metallochaperone | 252 |
| metastable polymorphic form | 25 |
| methanol | 61 |
| Mg2SiO4 | 195 |
| MgB2 | 187 |
| micoscopy | 254 |
| microbeam X-ray scattering | 176, 182 |
| microcrystal | 114 |
| microphase-separated structures | 125 |
| microwave heating | 29 |
| mineral deposition | 257 |
| mirage diffraction | 180, 181 |
| mirage fringe | 180 |
| mixed valence | 59 |
| Mn-doped ZnO | 171 |
| MnSiO3 | 220 |
| MnV2O4 | 96 |
| Mo/Si multilayer | 310 |
| MoC | 168 |
| modulation transfer function (MTF) | 303 |
| molecular catalyst | 10 |
| molecular chaperone | 276 |
| molecular cluster battery (MCB) | 16 |
| molybdenum (Mo) | 31 |
| monochromatic X-ray | 303 |
| morphology | 163, 312 |
| Mott insulator | 114 |
| MqnD | 298 |
| MTJ | 111 |
| mullite | 194 |
| multiferroic | 99, 147 |
| multilayer | 317 |
| multilayer grating | 318 |
| mutarotation | 267 |
| Mycobacterium tuberculosis | 260 |
| |
| N-doped TiO2 | 78 |
| N-end rule | 292 |
| N1s | 59 |
| Nafion | 17 |
| nano-sized Pt particles | 29 |
| nanocrystal | 141, 186 |
| nanocylinder | 120 |
| nanohybridization | 16 |
| nanomaterial | 118 |
| nanoparticle | 29, 30, 42, 74, 117, 147, 156, 176, 185 |
| nanosheet | 118 |
| nanospace | 55 |
| NaRuO2 | 118 |
| Nb:SrTiO3 | 86 |
| NC-AFM | 72 |
| Nd)11Ru4O24 | 201 |
| negative pressure effect | 114 |
| neodysiherbaine A | 279 |
| neptunium (Np) | 32 |
| NEXAFS | 56, 63, 66, 69, 70, 83, 148, 166 |
| NH3-SCR of NOx | 15 |
| Ni colloid | 124 |
| Ni nanocluster | 124 |
| Ni phosphide | 36 |
| nickel (Ni) | 64 |
| noble metal | 33 |
| non-aqueous sol gel method | 164 |
| nuclear fuel cycle | 33 |
| nucleotide | 260 |
| nuetral-ionic phase transition | 100 |
| |
| oder-order transition | 136 |
| oligomerization | 277, 282 |
| oligopeptide | 215 |
| oligosaccharide | 297 |
| olivine | 236 |
| one-dimensional hydrogen bond | 66 |
| operando XAFS | 36 |
| orbital moment | 110 |
| orbital order | 96, 98, 132 |
| ordering structure | 8 |
| organic acid cobalt | 41 |
| organic electronics | 60 |
| organic ferroelectrics | 128 |
| organic semiconductor | 314 |
| organic superconductor | 177 |
| organosilane | 140 |
| orientation | 70 |
| oxidation | 258 |
| oxidative esterification | 134 |
| oxide glass | 103 |
| oxygen (O) | 68 |
| |
| palladium (Pd) | 12, 29, 77, 134 |
| partial photon yield | 105 |
| partial reduction | 24 |
| particle distribution | 135 |
| path integral | 183 |
| pathogen | 266 |
| 8 | |
| PdTe | 42 |
| perovskite | 50, 126, 132, 139, 173, 204, 235, 240 |
| perpendicular orientation | 165 |
| phase change | 184, 237 |
| phase difference | 213 |
| phase E | 197 |
| phase transition | 92, 184, 223 |
| phase-contrast X-ray imaging | 312 |
| phosphate | 43 |
| phosphoketolase | 286 |
| phosphor plate | 311 |
| phosphorus (P) doping | 83 |
| photocatalyst | 7, 20, 30, 73, 78, 122, 142 |
| photodiode | 314 |
| photoelectrode | 86 |
| photoelectron diffraction (PED) | 80 |
| photoelectron spectroscopy (PES) | 41, 47, 48, 49, 50 |
| photoemission spectroscopy (PES) | 51, 52, 53, 54, 57, 59, 60, 61, 62, 63, 75, 88, 89, 90, 91, 102, 113, 119 |
| photoreduction | 20, 117 |
| photpsynthesis | 255 |
| PI3K SH3 domain | 248 |
| piezoceramics | 115 |
| pigment network | 196 |
| pigment protein | 281 |
| plasma diagnositcs | 311 |
| Plasmodium falciparum | 250 |
| plastic deformation | 239 |
| platinum (Pt) | 17, 66, 117, 140, 195 |
| pnictide | 94 |
| polar magnet | 131 |
| polarization | 70 |
| polarizer | 317 |
| polaron | 98 |
| poly (ethylene glycol) | 145 |
| polyethylene | 182 |
| polymer | 120, 125, 136, 138, 145, 149, 162, 163 |
| polymer electrolyte fuel cell (PEFC) | 17 |
| polymer film | 169 |
| polyoxometalate | 16 |
| polysaccharides | 11 |
| polysilane | 70 |
| position-sensitive XAFS | 32 |
| positron | 85 |
| potential quenching centers | 196 |
| powder X-ray diffraction | 25, 40, 115, 133, 139, 147, 194, 195, 204, 215, 218, 224, 232 |
| powder X-ray scattering | 96 |
| Pr4Ba2Cu7O15-δ | 232 |
| pre-edge | 20, 30, 206 |
| precision measurement | 116 |
| prenyl diphosphate | 259 |
| prenyltransferase | 259 |
| pressure denaturation | 293 |
| pressure-induced structural transition | 238 |
| projection | 291 |
| propionaldehyde | 134 |
| protein crystallography | 196, 203, 207, 209, 210, 241, 243, 249, 250, 251, 252, 253, 254, 255, 256, 259, 260, 261, 263, 264, 265, 266, 267, 268, 269, 271, 272, 273, 276, 277, 279, 280, 281, 283, 284, 286, 287, 289, 290, 292, 293, 297, 298, 299, 300, 301 |
| protein dynamics | 278 |
| protein transport | 271 |
| protein-protein interaction | 263 |
| proteolysis | 264 |
| proton transfer | 128 |
| proton-electron mixed conductor | 43 |
| protonation states | 299 |
| Prussian blue analogue | 108, 211 |
| Pseudomonas stutzeri | 280 |
| Pt complex | 10 |
| Pt/Au(111) | 65 |
| Pteris vittata | 294 |
| PTRF-XAFS | 81, 84 |
| PtRu | 185 |
| pyridoxal 5'-phosphate | 210 |
| |
| quantum confinement | 91 |
| quartz tuning fork (QTF) | 72 |
| quasi-2D structure | 91 |
| quick-XAFS | 117 |
| quinoidal | 46 |
| |
| Rac small GTPase | 203 |
| radiation chemistry | 1, 4 |
| radiobiology | 288 |
| Ralstonia sp. A-471 | 209 |
| Raman spectra | 218 |
| random anisotropy model | 186 |
| rare sugar | 280 |
| Rashba effect | 76 |
| reaction intermediate | 272 |
| reactive oxygen species | 203 |
| redox | 23 |
| redox reaction | 108 |
| reduction | 191 |
| reflection high-energy positron diffraction (RHEPD) | 85 |
| reflection statistics | 201 |
| reflectivity | 317 |
| refolding | 244, 245, 247 |
| regeneration | 307 |
| ReRAM | 53 |
| resistive switching (RS) | 53 |
| resonant photoemission spectroscopy (RPES) | 63 |
| resonant soft X-ray scattering | 97 |
| resonant X-ray scattering | 121, 132 |
| Rh cluster | 84 |
| Rh(111) | 68 |
| RhCl[P(C6H5)3]3 | 6 |
| rheology | 221, 236, 239 |
| rhodium (Rh) | 21 |
| RhSb3 | 222 |
| RhTe | 42 |
| rieske oxygenase | 263 |
| Rietveld | 139 |
| Rietveld method | 25 |
| RNA aptamer | 273 |
| Rossmann fold | 277 |
| rubber | 41 |
| Rubisco | 255 |
| Runx1 | 287 |
| RuO2 | 79 |
| ruthenium (Ru) | 122, 201 |
| rutile structure | 79 |
| |
| SAD | 260 |
| SAXS | 11, 67, 120, 125, 136, 138, 144, 145, 149, 154, 156, 162, 163, 165, 167, 169, 172, 174, 182, 242, 244, 245, 246, 247, 248, 262, 270, 274, 275, 278, 282, 285 |
| SAXS_MD | 242 |
| scandium carbide | 37 |
| scanning photoemission microscopy (SPEM) | 58 |
| scanning tunneling microscopy (STM) | 313 |
| Scc1 peptide | 292 |
| Schiff base | 39 |
| Schottky barrier height (SBH) | 50 |
| sea cucumber | 282 |
| Sec translocon | 271 |
| SecDF | 271 |
| sediment | 14 |
| segregation strength | 125 |
| selective oxidation | 74, 157 |
| selenium (Se) | 135 |
| self-assembled | 70 |
| self-assembly | 156 |
| self-insertion reaction | 222 |
| semiconductor | 47, 48, 49, 104, 150, 190 |
| sensitivity calibration | 311 |
| serine protease | 299 |
| serpentine | 231 |
| sesquioxides | 223 |
| sewage sludge incineration | 135 |
| shallow trench isolation (STI) | 58 |
| shear | 154 |
| Shewanella | 293 |
| Si (100) | 57 |
| Si/Ge (111) | 71 |
| sialyllactose | 297 |
| SiC | 82, 116, 137, 148 |
| siderite | 23 |
| SiGe-on-insulator (SGOI) | 308 |
| silica | 12, 144 |
| silica-coating | 140 |
| silicate perovskite | 220 |
| silicene | 80 |
| silicide | 189 |
| silicon (Si) | 48, 49, 62, 80, 104, 216 |
| silicon oxide | 57 |
| sillimanite | 194 |
| silver cluster | 45 |
| silver-ion-exchanged zeilite | 45 |
| single crystal | 197 |
| single crystal electrode | 65 |
| single-site catalyst | 28 |
| single-wall carbon nanotube (SWCNT) | 113, 146, 16 |
| sink/float method | 219 |
| sinter | 192 |
| sintering | 140 |
| SiO2 | 103 |
| SiO2/Si(100) | 47 |
| size dependence | 120 |
| size effect | 147 |
| skutterudite | 151, 222, 224, 227 |
| Sm-CeO2 | 74 |
| sodium chloride | 217 |
| sodium fluoride | 13 |
| soft magnet | 186 |
| soft X-ray | 169, 291, 316, 317 |
| soft X-ray absorption | 108 |
| soft X-ray emission spectroscopy (SXES) | 103, 318 |
| SOI | 315 |
| soil | 23 |
| solar energy conversion | 122 |
| solid oxide fuel cell (SOFC) | 126, 139, 204 |
| solid solution | 220, 235 |
| solid-state photoreaction | 25 |
| solution | 6 |
| spherical microdomains | 149 |
| spin moment | 110 |
| spin transition | 27 |
| spin- and angle-resolved photoemission spectroscopy (SARPES) | 76 |
| spin-resolved photoemission spectroscopy | 101 |
| spinel structure | 96 |
| spintronics | 155 |
| sputtering rate monitor | 309 |
| square planar | 238 |
| (Sr | 201 |
| Sr1-xCexMnO3 | 98 |
| Sr3Fe2O5 | 238 |
| Sr4V2O6Fe2As2 | 94 |
| src SH3 | 242 |
| SrMoO3 | 89 |
| SrNbO3.4 | 133 |
| SrZnO3 | 173 |
| Staphylococcus aureus | 266, 270, 277 |
| stepped surface | 66 |
| STM | 71, 84 |
| strain | 71, 308 |
| strong gravity field | 202 |
| structural change | 224, 233 |
| structural disorder | 160 |
| structural fluctuation | 278 |
| structural transition | 143 |
| structure refinement | 198 |
| structure-based drug design | 279 |
| suboxide | 57 |
| substrate selectivity | 267 |
| substrate specificity | 283 |
| subtitution | 9 |
| sufactant | 156 |
| sulfation | 15 |
| sulfur | 14 |
| sulfur (S) | 258 |
| sulfurization | 41 |
| super hydrous phase B | 198 |
| superconducting tunnel junction (STJ) | 316 |
| superconductor | 94, 95, 161, 187, 232 |
| superlattice | 211 |
| superlattice film | 131 |
| surface metallization | 61 |
| surface states | 101 |
| surface structure | 85 |
| surface X-ray scattering (SXS) | 65 |
| surfactant | 67, 154, 167 |
| SXFS | 107 |
| symbiosis | 261 |
| symmetry | 201 |
| |
| tautomerisum | 128 |
| TCNQ | 46 |
| TCR | 287 |
| tektite | 200, 214 |
| tellurium (Te) | 141 |
| terbium fluoride (TbF3) | 38 |
| tetrahedral Cr-oxide | 142 |
| tetrahedral Ti-oxide | 142 |
| Tetrahymena pyriformis | 249 |
| tetrathiafulvalene (TTF) | 75 |
| tetraubiquitin | 243 |
| tetravalent | 87 |
| thermal expansion | 116, 183, 195 |
| thermal oxidation | 57 |
| thermoelectrics | 133, 184 |
| thermoplastic elastomer | 149 |
| Thermus thermophilus | 283, 284 |
| thiamine diphosphate | 286 |
| thickness | 82, 106 |
| thin film | 88, 88, 89, 90, 91, 99, 101, 102, 106, 127, 129, 130, 150, 158, 165, 171, 173 |
| thorium fluoride (ThF4) | 13, 18 |
| threshold photoelectron source | 3 |
| Ti-K XANES | 30 |
| Ti2O3 | 105 |
| time resolved | 175, 244, 245, 247, 282 |
| time resolved X-ray diffraction | 229 |
| TiN/HfSiON | 54 |
| TiNxOy | 178 |
| TiO2 | 30, 73, 81, 178 |
| titanium (Ti) | 200, 214 |
| Tl/Si(111) | 76 |
| TlInSe2 | 184 |
| TNAP | 59 |
| topological insulator | 101 |
| total reflection | 85 |
| traction oil | 225, 226 |
| transcription factor | 287 |
| transformation | 221 |
| transition metal oxide | 238 |
| transmission X-ray CT | 304 |
| transparent conductive oxides | 158 |
| tribology | 225, 226 |
| trichloroacetamide | 160 |
| triple phase boundary | 17 |
| trivalent | 87 |
| truncated hemoglobin | 249 |
| trypanosoma brucei gambiense | 207 |
| TTF | 31 |
| twisted yarn | 174 |
| two-dimensional electron gas state | 71 |
| |
| ubiquitin | 243 |
| UBR box | 292 |
| Ubr1 E3-ligase | 292 |
| ultraviolet photoelectron spectroscopy (UPS) | 60, 62 |
| unfolding | 248 |
| uranium (U) | 19 |
| |
| V1-xWxO2 | 90 |
| valence | 87 |
| valence band structure | 170 |
| valence change | 175 |
| valence instability | 159 |
| van Hove singularity | 113 |
| vanadium oxides | 132 |
| Vegard's law | 190 |
| velocity-map imaging | 2 |
| vesicle | 154, 167 |
| visible-light-response photocatalyst | 78 |
| vitamin B1 | 286 |
| vitamin D3 | 253 |
| VO2 | 129 |
| VUV spectrometer | 311 |
| |
| wall ion exchange | 26 |
| wastewater treatment | 34 |
| water | 66 |
| water splitting | 86, 122 |
| WAXS | 182 |
| wideband | 318 |
| Wilkinson's complex | 6 |
| |
| X-ray absorption spectroscopy (XAS) | 19, 39, 44, 62, 64, 75, 108, 109, 111, 112, 119, 126, 178, 189, 313 |
| X-ray contact microscopy | 258 |
| X-ray crystal density method | 216 |
| X-ray crystallography | 243, 271 |
| X-ray diffraction (XRD) | 27, 31, 37, 46, 82, 99, 100, 114, 116, 118, 127, 128, 129, 131, 141, 143, 146, 160, 161, 192, 197, 198, 199, 201, 202, 208, 217, 220, 221, 222, 225, 226, 227, 229, 230, 231, 233, 234, 235, 236, 237, 239, 240 |
| X-ray emission spectroscopy (XES) | 92, 105, 107 |
| X-ray fluorescence analysis (XRF) | 295, 257 |
| X-ray fluorescence holography | 155 |
| X-ray fluorescence spectroscopy | 107 |
| X-ray image sensors | 315 |
| X-ray induced phase transition | 129 |
| X-ray magnetic diffraction | 110 |
| X-ray microbeam | 288 |
| X-ray microscopy | 291 |
| X-ray Raman scattering | 92, 105 |
| X-ray resonant exchange scattering | 186 |
| X-ray resonant scattering | 206, 213 |
| X-ray solution scattering | 242, 246, 248 |
| X-ray structure | 297 |
| X-ray topography | 137, 179, 205, 213, 308 |
| x/n joint refinement | 299 |
| XAFS | 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 22, 32, 33, 43, 45, 81, 123, 124, 135, 151, 152, 168, 171, 175, 187, 191, 193, 316 |
| XANAM | 72 |
| XANES | 7, 14, 17, 19, 20, 24, 26, 28, 29, 30, 43, 44, 55, 74, 87, 117, 130, 135, 142, 158, 159, 164, 185, 211, 214, 294, 295, 296 |
| xanthine oxidoreductase | 272 |
| xenon (Xe) | 45 |
| XMCD | 64, 106, 111, 112, 153 |
| XPS | 59, 62, 77, 157, 189 |
| |
| Y2BaCuO5 | 202 |
| YB-1protein | 275 |
| yitterbium (Yb) | 159 |
| YMnO3 | 99 |
| |
| Z-scheme | 122 |
| zeolite | 22 |
| ZG16b | 268 |
| ZG16p | 268 |
| zinc (Zn) | 257 |
| zinc acetate | 55 |
| zinc oxide (ZnO) | 52, 61, 75, 164 |
| ZnGa2O4 | 7 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2010
Copyright © 2011 by High Energy Accelerator Research Organization (KEK)