|
Photon Factory Activity Report 2007 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
1 | |
| RuO2 | 53 |
| |
| 2D time-resolved X-ray diffraction | 194 |
| [2Fe-2S] transcription factor | 220 |
| |
| 6H-SiC | 58 |
| |
| α-D-phosphohexomutase superfamily | 208 |
| α-olefin | 173 |
| α-synuclein | 212 |
| absolute intensity | 267 |
| absolute sensitivity | 266 |
| absorption edge | 74, 109 |
| absorption factor | 273 |
| acidosis | 252 |
| adsorption | 70 |
| aerosol | 258 |
| AFM | 74 |
| Ag | 95, 174 |
| air pollution | 257 |
| Al2O3/SiO2/Si | 71 |
| alcohol oxidation | 42 |
| aldehyde oxidation | 10 |
| alkali metal cation | 32 |
| alkylthiols | 59 |
| alloy | 28, 116 |
| alumina | 40 |
| amino acid | 20 |
| amyloid | 212 |
| analytical imaging | 255 |
| anatase | 90 |
| angiography | 251 |
| anilic acid | 111 |
| anisotropic | 130 |
| annexin | 224 |
| anomalous scattering | 187 |
| anti-phase | 177 |
| antibody | 184 |
| antigen-antibody interaction | 217 |
| antimony (Sb) | 72 |
| aragonite | 16 |
| archaea | 236 |
| aromatic molecules | 6 |
| ARPES | 47, 54, 57, 72, 75, 77, 84, 85, 86, 87, 88, 90, 95 |
| arterial response | 251 |
| aspartate kinase | 242 |
| atomic displacement parameters | 182 |
| ATS | 109 |
| Au | 73, 74 |
| Au catalyst | 63 |
| Au(111) | 59 |
| AuDMe(Acac) | 73 |
| azobenzene | 136 |
| |
| β-trefoil | 230 |
| Ba ferrite | 187 |
| Ba2In2O5 | 108 |
| Ba2-xLaxIn2O5+α | 107 |
| bacteria | 240 |
| bacterial multidrug response | 223 |
| band gap energy | 71 |
| base oil | 112 |
| batch extraction method | 7 |
| BaTiO3 | 96 |
| battery | 37 |
| BCN | 25 |
| Bi2223 | 87 |
| bifidobacteria | 235 |
| bilayer | 140, 211 |
| bimetallic | 119 |
| bimetallic particles | 33 |
| bioceramics | 210 |
| biogenic iron oxides | 144 |
| bioinformatics | 225 |
| biological monitor | 257 |
| biomass | 27 |
| biomedical research | 253 |
| bismuth (Bi) | 72, 124, 152 |
| bisphosphonates | 218 |
| blend | 154 |
| block copolymer | 114, 115, 127, 136, 151, 154, 163 |
| boiling | 23 |
| bond length fluctuation | 185 |
| bond valence | 210 |
| Bragg case | 125 |
| Bragg Laue case | 125 |
| broad band | 152 |
| bromine (Br) | 252 |
| bulk modulus | 202 |
| butanol | 34 |
| |
| Ca K-edge | 263 |
| calcite | 16 |
| calcium (Ca) | 229, 252, 258 |
| calcium chloride | 5 |
| calcium-binding site | 224 |
| calmodulin | 225, 243, 247 |
| Cannabinoid | 233 |
| Cannabis | 233 |
| capsular polysaccharide | 237 |
| carbon (C) | 64, 129 |
| carbon nanotube | 65, 92, 118 |
| carbonate | 189 |
| carbonate mineral | 190 |
| cardiac disease | 253 |
| carotenoid biosynthesis | 178 |
| catalyst | 9, 10, 17, 18, 27, 28, 34, 35, 36, 40, 43, 46, 101, 119, 128, 129, 131, 132, 137, 170, 262 |
| catalytic reaction mechanism | 207 |
| cathode | 101 |
| cation site | 166 |
| CCD | 268 |
| CdTe | 183 |
| cellobiose phosphorylase | 219 |
| CeO2 | 138 |
| ceria-zirconia | 181 |
| cerium (Ce) | 161, 240 |
| characteristic X-ray | 3 |
| charge density | 79 |
| charging-discharging | 37 |
| chemical analysis | 22 |
| chemical vapor deposition | 25 |
| chiral | 20 |
| chitobiose phosphorylase | 219 |
| ciguatoxin | 184 |
| citrullination | 229 |
| Clostridium botulinum | 230 |
| ClpX | 238 |
| cluster | 174 |
| Co-Pt film | 153 |
| cobalt (Co) | 48, 117 |
| coincidence spectroscopy | 64, 65 |
| cold exposure | 251 |
| colloid | 28 |
| colloidal dispersion | 33 |
| cometary particles | 175 |
| commensurate-incommensurate | 104 |
| composite | 113, 118 |
| Compton profile | 122, 158 |
| concerted inhibition | 242 |
| configuration-interaction cluster-model theory | 75 |
| confinement | 11 |
| contrast variation | 213 |
| conversion electron yield method | 259 |
| coordination network | 19, 21 |
| copper (Cu) | 23, 45 |
| core | 198 |
| core-electron excitation | 4, 64, 65 |
| core-level shift | 47 |
| Corynebacterium glutamicum | 242 |
| counting loss | 272 |
| crystal structure | 107, 108, 110, 179, 195 |
| crystallin | 226 |
| crystallization | 115 |
| CT | 222 |
| Cu-Cl complex | 7 |
| cultural heritage | 255 |
| CuMn-spinel | 170 |
| cuprate | 84, 86, 87, 88, 256 |
| Curdlan | 130 |
| CVTF | 263 |
| cyanide | 45 |
| cyanide treatment | 63 |
| CYP105 | 248 |
| cytochrome | 244 |
| cytochrome P450 | 248 |
| |
| deadtime | 272 |
| defects | 65 |
| deformation | 173 |
| dehydration | 193 |
| dehydrosqualene synthase | 178 |
| density measurement | 198 |
| detector | 265 |
| dialysis | 130 |
| dielectric properties | 142 |
| differeitial scanning calorimetry | 237 |
| diffraction profile | 186 |
| diffuse scattering | 176 |
| diffusion | 62 |
| diluted ferromagnetic semiconductor | 100 |
| diluted magnetic semiconductor (DMS) | 89, 120, 147 |
| dipole-quadrupole transition | 109 |
| dispersion surface | 177 |
| dispersive XAFS (DXAFS) | 9, 39, 40 |
| dissociation | 1, 6 |
| distortion model | 223 |
| DMFC | 137 |
| double crystalline diblock copolymers | 115 |
| double-exchange interaction | 139 |
| drug design | 188 |
| drug discovery | 218 |
| dyad | 236 |
| |
| effect of pore size | 18 |
| elastic constant | 183 |
| electric structure | 76 |
| electrochemistry | 68 |
| electron correlation | 48, 77 |
| electron density | 8 |
| electron doping | 148 |
| electron-doped high-Tc superconductor | 85 |
| electronic states | 48 |
| electronic structure | 47, 87, 96 |
| elemental anaylsis | 74 |
| elemental concentrations | 252 |
| elongation factor | 246, 247 |
| energy response | 269 |
| energy spectrum | 3 |
| epitaxial thin film | 78 |
| EUV | 254 |
| EUV polarization | 268 |
| EXAFS | 5, 7, 10, 11, 13, 14, 17, 18, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 41, 42, 66, 67, 68, 69, 73, 94, 105, 106, 119, 120, 121, 128, 129, 131, 132, 133, 134, 135, 137, 141, 143, 144, 147, 152, 157, 165, 166, 167, 170, 171, 174, 256, 262, 263 |
| exciton | 196 |
| |
| F1-ATPase | 234 |
| Fab | 184 |
| Fe and Mn oxides | 259 |
| Fe K-edge | 144 |
| feedback inhibition | 242 |
| feeling of cold | 251 |
| FePd alloy | 116 |
| FeRh | 134 |
| ferrihydrite | 144 |
| ferrite nanoparticle | 56 |
| ferritin | 213 |
| ferroelastic | 102 |
| FeS liquid | 198 |
| fibrillation | 212 |
| flavocytochrome | 244 |
| fluctuation | 155, 203 |
| fluid inclusion | 22 |
| fluorescence | 1 |
| fluorescent X-ray CT | 253 |
| fluorite | 157 |
| force curve | 74 |
| form factor | 99 |
| fracture | 118 |
| Fresnel | 222 |
| FSM-16 | 29, 34 |
| fullerene | 117 |
| Fyn | 221 |
| |
| galactose | 230 |
| GaN | 100 |
| ganglioside | 228 |
| gas injection | 39 |
| gasification | 27 |
| gate dielectrics | 49 |
| gate insulator | 50 |
| gel | 130, 140 |
| gelation | 12 |
| germanium (Ge) | 47, 55 |
| GISAXS | 116, 136, 172 |
| GIXS | 260 |
| glass structure | 192 |
| glutaminase | 231 |
| glycerol | 141 |
| glycine | 182 |
| glycolipid | 228 |
| glycoside hydrolase | 219, 235 |
| gold (Au) | 73, 74 |
| grating | 264, 271 |
| |
| hafnium (Hf) | 51 |
| hair | 227, 252 |
| HCl | 31 |
| head-to-head condensation | 178 |
| heat shock proteins | 249 |
| heating process | 114 |
| hemagglutinin | 230 |
| heme oxygenase | 239 |
| hetero junction | 52 |
| hexaferrite | 187 |
| high aspect ratio | 271 |
| high Bs | 261 |
| high molecular weight (HMW) | 226 |
| high pressure | 112, 180, 183, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 201, 202, 203, 204, 205 |
| high pressure phase | 179 |
| high pressure synthesis | 106, 200 |
| high temperature | 14, 181 |
| high-Tc cuprate superconductor | 84, 86, 87, 88, 256 |
| high-k | 49, 51, 60, 79 |
| high-temperature and high-pressure synthesis | 106 |
| HIV-1 genome products | 243 |
| host-guest | 19, 21 |
| human milk oligosaccharide | 235 |
| hydrate melt | 5 |
| hydrated ion | 11 |
| hydride | 105, 197 |
| hydrocarbon | 203 |
| hydrodesulfurization | 17, 36, 262 |
| hydroformylation | 34 |
| hydrogen (H) | 64, 65 |
| hydrogen bonding | 151 |
| hydrogenolysis | 141 |
| hydrophobic | 66 |
| hydrous phase | 193 |
| hyperfine magnetic field | 82 |
| |
| imaging | 22, 150, 159, 168, 198, 222, 227, 250, 251, 253, 257, 264, 265, 271, 274 |
| imaging plate (IP) | 269 |
| immobilization | 35 |
| impurity effect | 126 |
| in situ | 17, 19, 21, 46 |
| in situ EXAFS | 262 |
| in situ observation | 200 |
| in situ XAFS | 15, 39, 46, 63, 128 |
| in-phase | 177 |
| in-plane XRD | 169 |
| incommensurate | 123 |
| incommensurate-commensurate transition | 150 |
| infrared luminescence | 152 |
| InGaN | 165 |
| inner core excitation | 6 |
| inorganic pharmaceuticals | 24 |
| instrumentation | 39, 270, 271, 273 |
| insulin | 176 |
| interface | 11, 58, 60 |
| interfacial reaction | 71 |
| interference fringe | 125, 177 |
| interferometry | 250 |
| intermediate spin state | 103, 139 |
| intermediately extended deadtime model | 272 |
| iodine (I) | 113 |
| ion desorption | 4 |
| ion exchange resin | 7 |
| ion irradiation | 138 |
| ionic liquid | 35, 143, 149 |
| iron complex | 32 |
| iron core | 213 |
| iron oxide nanoparticle | 132 |
| iron-sulfur cluster | 216 |
| iron-sulfur protein | 216 |
| isoprenoid | 218 |
| isothermal compressibility | 203 |
| ITO | 70 |
| |
| Jahn-Teller effect | 45 |
| |
| kinetics | 193 |
| kink | 87 |
| |
| L-cysteine | 70 |
| La1-xCaxCoO3 | 139 |
| La1-xSrxTiO3 | 97 |
| La1-xSrxMnO3 thin film | 80 |
| LaAlO3 | 49 |
| labile species | 19, 21 |
| LaCo5 | 105 |
| LaCoO3 | 139 |
| lamellar | 38, 154, 163, 228 |
| lamellar twisting | 162 |
| LaNi5 | 105 |
| lanthanide | 29, 30 |
| Laue case | 177 |
| LED | 100 |
| Li-ion battery | 185 |
| lifting | 59 |
| light-harvesting complex | 244 |
| lignin | 27 |
| LiMn2O4 | 185 |
| liquid | 191, 204, 205 |
| lithography | 254 |
| liver | 250 |
| local lattice structure | 94 |
| local structure | 121, 135, 156, 157, 159, 171, 256 |
| local-density approximation | 75 |
| long crystallization time | 115 |
| low energy electron collision | 2 |
| low molecular weight gelator | 12 |
| low-Z | 197 |
| LS separation | 91 |
| LSI | 254 |
| lubricant | 112 |
| luminescence | 44 |
| lysine biosynthesis | 241 |
| |
| Mössbauer | 216 |
| Mössbauer effect | 82 |
| Madelung potential | 80 |
| magma | 199 |
| magnesium vanadate | 131 |
| magnetic anisotropy | 153 |
| magnetic Compton profile | 158 |
| magnetic diffraction | 83, 91, 98, 99 |
| magnetic field | 163 |
| magnetic properties | 142 |
| magnetic transition | 134 |
| magnetite | 109 |
| magnetoelectric material | 142 |
| magnetoresistance | 117, 158 |
| magnetron cosputtering | 120 |
| manganese (Mn) | 54, 240 |
| maximum entropy method (MEM) | 110, 111 |
| MCM-41 | 11, 17, 18 |
| melt structure | 192 |
| mesopore | 34, 41 |
| mesoporous | 29 |
| mesoporous silica | 132 |
| mesoporous silica thin film | 67 |
| metal complex | 201 |
| metal-insulator transition (MIT) | 93 |
| metallo-fullerene | 92 |
| methane | 119 |
| MgAl2O4 | 179 |
| MgSiO3 | 192 |
| MgZnO | 164 |
| microbeam SAXS | 162, 172 |
| Micrococcus luteus K-3 | 231 |
| microdomain | 154, 163 |
| microphase separation | 136 |
| miscibility | 155 |
| mitochondrial complex II | 188 |
| mixed crystal | 135, 159 |
| Mn 3s exchange splitting | 43 |
| Mn oxide | 43 |
| Mn4O4 heterocubane cluster | 185 |
| Mn-doped | 94 |
| model structure | 215 |
| molecular cluster | 37 |
| molecular oxygen | 42 |
| molecular recognition | 184 |
| molten salt | 14, 26 |
| molybdenum (Mo) | 36 |
| momentum imaging | 6 |
| Monte Carlo | 3 |
| morphology | 151, 211 |
| moss | 257 |
| MoxA | 248 |
| MSGC | 265 |
| multiferroic | 104 |
| multilayer | 158, 254, 268 |
| multiply excited states | 1 |
| muscle contraction | 215 |
| myosin crossbridge | 214 |
| |
| nano-structure | 48 |
| nanocluster | 54 |
| nanocrystalline | 121 |
| nanodot | 55, 116 |
| nanometer | 168 |
| nanoparticle | 28, 34, 56, 69, 82, 89, 124, 129, 132, 167 |
| nanosheet | 69, 169 |
| NC-AFM | 74 |
| neutralization | 258 |
| NEXAFS | 25, 70, 117 |
| Ni2P | 17 |
| Ni-MCM-41 | 18 |
| Ni-Zn mixed basic salt | 42 |
| nickel (Ni) | 45, 46 |
| normal mode analysis | 182 |
| novel structure | 243 |
| nuclear forward scattering | 216 |
| nuclear fuels | 138 |
| nuclear resonant scattering | 82, 216 |
| N,Ndialkylamide | 13 |
| N-acetylglucosamine-phosphate mutase | 208 |
| |
| one dimensional electronic structure | 122 |
| orbital form factor | 98 |
| orbital magnetic form factor | 91 |
| orbital moment | 153 |
| orbital ordering | 83, 102, 103, 126, 160 |
| order-disorder | 98 |
| order-disorder transition (ODT) | 127 |
| ore-forming fluid | 22 |
| organic conductor | 123 |
| organic ferroelectrics | 111 |
| organic material | 201 |
| orientation | 113, 136, 163, 168 |
| oriented film | 169 |
| oxidation | 56, 227, 240 |
| oxidative response regulation | 220 |
| oxidative steam reforming | 119 |
| oxide | 78, 260 |
| oxygen storage | 30 |
| oxynitride | 156, 157, 166 |
| oxysulfate | 30 |
| oxysulfide | 8 |
| |
| π stacking | 146 |
| palladium (Pd) | 20, 40, 42, 131 |
| Pauling's bond length | 135 |
| Pd complex | 24 |
| Pd3Co | 98 |
| PdTe | 28 |
| peapod | 92 |
| PEEM | 62, 168 |
| PEFC | 101 |
| pelagic sediment | 16 |
| peptidylargine deiminase | 229 |
| perovskite | 156, 157 |
| perovskite oxide | 52, 142 |
| phage display | 217 |
| phase behavior | 127 |
| phase contrast | 250, 264 |
| phase imaging | 271 |
| phase transition | 16, 102, 107, 108, 181, 189, 190, 195, 228 |
| phenol synthesis | 9 |
| phosphatidylglycerol | 211 |
| phospholipid | 211 |
| phosphorylase | 219 |
| photocatalyst | 8, 15, 41, 66, 90, 128, 166 |
| photodiode | 273 |
| photoemission spectroscopy (PES) | 49, 50, 51, 52, 53, 55, 79, 80, 81, 85, 89, 92, 97, 100, 117 |
| photoreduction | 143, 149 |
| photosynthesis | 244 |
| phthalocyanine | 168 |
| Plasmon peak | 71 |
| platinum (Pt) | 33, 68 |
| polar surface | 57 |
| polarization | 168 |
| polarization dependence | 76 |
| poly(ethylene terephthalate) | 118 |
| poly-hexylthiophene | 146 |
| polycyclic ether | 184 |
| polyethylene | 173 |
| polymer | 113 |
| polymer blend | 155 |
| polymeric photovoltaic cell | 146 |
| polymorph | 182 |
| polynorbornene | 114 |
| porphyry type deposit | 23 |
| position sensitive | 265 |
| powder X-ray diffraction | 44, 181, 201 |
| pre-edge peak | 41 |
| precipitation | 113 |
| prenyltransferases | 218 |
| principles of protein structure | 225 |
| projection | 222 |
| propylene oxide | 63 |
| protease | 236, 238 |
| protein | 216, 246, 247 |
| protein assembly | 249 |
| protein crystal | 145, 176 |
| protein crystallography | 178, 184, 188, 206, 207, 208, 217, 218, 219, 220, 221, 223, 224, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 241, 242, 244, 245, 248 |
| protein folding | 209 |
| protein kinase | 221 |
| protein-DNA complex | 206, 220, 245 |
| proton sponge | 111 |
| Pt complex | 44 |
| Pt-Ni | 119 |
| Pt-Ni alloy | 129 |
| Pt/Ru bimetallic nanoparticles | 106 |
| PTRF-XAFS | 68, 73 |
| PtRu | 137 |
| pyrochrore | 157 |
| Pyrococcus horikoshii | 236 |
| |
| quantum confinement | 55 |
| quick XAFS (QXAFS) | 17, 174 |
| quntum dot crystal | 196 |
| |
| radiometer | 267 |
| raft | 228 |
| Raman spectroscopy | 93 |
| rare earth | 91, 156, 157 |
| rare-earth aluminates | 186 |
| rattling | 133 |
| reaction intermediates | 239 |
| reaction mechanism | 15 |
| receptor-ligand interaction | 232 |
| reconstruction | 59 |
| redox | 131 |
| reflectivity | 261 |
| regeneration | 262 |
| regulation | 241 |
| RepE | 206 |
| replication initiator | 206 |
| repressor-inducer complex | 223 |
| repressor-operator complex | 223 |
| resonant scattering | 96, 109 |
| resonant X-ray scattering | 103, 126, 160 |
| rhenium (Re) | 141 |
| rhodium (Rh) | 31, 33, 34, 141 |
| rhombohedral modification | 186 |
| Rietveld analysis | 8, 110, 210 |
| rocking curve | 145, 176 |
| room temperature ferromagnetism | 120, 147 |
| rotational catalysis | 234 |
| ruthenium (Ru) | 10 |
| ruthenium cocatalyst | 128 |
| |
| S100A3 | 229 |
| salt-tolerant | 231 |
| samarium (Sm) | 99 |
| SAXS | 12, 38, 113, 114, 115, 116, 118, 127, 130, 136, 140, 149, 151, 154, 155, 162, 163, 172, 173, 203, 203, 209, 211, 212, 213, 214, 215, 225, 226, 228, 229, 243, 246, 247, 249, 273 |
| Schottky barrier height | 52 |
| segregation | 53 |
| selective oxidation | 9, 10 |
| self assembly | 19, 20, 21 |
| self-assembled monolayer (SAM) | 4, 59, 68 |
| semi-coordination | 45 |
| semiconductor | 164, 165, 171 |
| sensitivity | 264 |
| sex difference | 251 |
| SH3 α-helix-rich intermediate | 209 |
| shape memory alloy | 150 |
| shear | 38 |
| Si(111) | 68 |
| Si-SiO2 | 62 |
| Si:As | 171 |
| sialic acid | 230 |
| silica glass | 152 |
| silica-coated nanoparticle | 129 |
| silicidation | 51 |
| silicon (Si) | 55, 72 |
| silver (Ag) | 47, 95, 174 |
| silver particle | 143, 149 |
| simultaneous measurement | 273 |
| simultaneous multivavelength dispersive | 270 |
| single crystal X-ray diffraction | 180, 185, 186 |
| SiO2 | 50 |
| site occupancy | 187 |
| site preference | 210 |
| skeletal muscles | 214 |
| skutterudite | 133, 200, 202 |
| SmAl2 | 99 |
| small-angle scattering | 82 |
| sodium ion | 224 |
| soft X-ray | 267 |
| solid oxide fuel cells | 110 |
| solution chemistry method | 147 |
| solution scattering | 209, 246, 247 |
| solution structure | 249 |
| SoxR | 220 |
| space group determination | 186 |
| specific heat | 182 |
| spectromicroscopy | 227 |
| spherical complex | 20 |
| spin density | 99 |
| spin density distribution | 83 |
| spin form factor | 98 |
| spin magnetic form factor | 91 |
| spin-lattice coupling | 104 |
| spinel | 102, 166 |
| spintronics | 100 |
| SR-XPS | 71 |
| Src family | 221 |
| SrTiO3 | 53 |
| SrVO3 | 77 |
| SSD | 263 |
| SspB | 238 |
| ssrA | 238 |
| stabilizing model | 223 |
| standard | 267 |
| Staphylococcus aureus | 237 |
| staphyloxanthin biosynthesis | 178 |
| stardust | 175 |
| statistics | 272 |
| steam reforming reaction | 170 |
| stepwise complexation | 7 |
| stomatin | 236 |
| strain | 60, 80 |
| strong electron correlations | 84 |
| structural transition | 105 |
| subgel phase | 211 |
| substrate specificity | 241, 248 |
| sugar metabolic enzymes | 235 |
| sulfur (S) | 227 |
| sulfur-containg compound | 56 |
| sulfuric acid | 258 |
| super hydrous phase B | 180 |
| superconductivity | 94 |
| superconductor | 202 |
| supercritical carbon dioxide | 143, 149 |
| superhydrophilic property | 67 |
| superlattice | 261 |
| supported metal catalyst | 27 |
| supported metal complex | 10 |
| surface | 47, 259, 260 |
| surface electronic structure | 53 |
| surface states | 72 |
| surface X-ray scattering | 59 |
| surfactant | 38, 140 |
| SXFS | 58 |
| |
| Talbot interferometer | 264, 271 |
| tellurium (Te) | 167 |
| tetrahedral coordination | 29 |
| THCA synthase | 233 |
| themal aggregation | 249 |
| thermal diffuse scattering (TDS) | 183 |
| thermodynamics | 217 |
| Thermus thermophilus | 241 |
| thin film | 67, 75, 77, 78, 80, 81, 97, 116, 142, 146, 168, 172 |
| threshold photoelectron | 2 |
| Ti oxide | 76 |
| Ti2O3 | 93 |
| tight-binding model | 75 |
| time-resolved | 40, 140, 193, 194, 213, 270 |
| tin (Sn) | 31, 55 |
| TiO2 | 66, 69, 100 |
| TiO2(110) | 73 |
| titania | 36, 41 |
| titanium (Ti) | 260 |
| transcription factor | 245 |
| transcriptional regulation | 245 |
| transferase | 178 |
| transformation | 197 |
| transformation kinetics | 194 |
| transparency | 155 |
| tribology | 112 |
| tricalcium phosphate | 210 |
| tumor | 250 |
| tungsten deposit | 22 |
| T'-(La3+,Y3+)2CuO4 (LYCO) | 256 |
| |
| U(VI) | 13 |
| uranium (U) | 5 |
| uridine-diphospho-N-acetylglucosamine pyrophosphorylase | 207 |
| |
| valence | 161 |
| valence band | 57, 90 |
| valence electrons | 80 |
| vanadium (V) | 15, 58 |
| vapochromism | 44 |
| vapor inclusion | 23 |
| Vegard's law | 135 |
| verdoheme | 239 |
| viscosity | 199 |
| visibility | 271 |
| visible light-near infrared spectroscopy | 255 |
| VUV spectrograph | 266 |
| |
| water | 203 |
| water splitting | 8 |
| WAXS | 173 |
| weakly segregation | 127 |
| weathering | 259 |
| white X-ray | 61 |
| wide gap semiconductor | 148 |
| |
| X-ray absorption spectroscopy (XAS) | 48, 76, 78, 101, 121 |
| X-ray aided noncontact atomic force microscopy (XANAM) | 74 |
| X-ray confined beam | 125 |
| X-ray differential phase contrast imaging | 274 |
| X-ray diffraction (XRD) | 107, 108, 124, 146, 175, 191, 196, 202, 204, 205 |
| X-ray emission spectroscopy (XES) | 43, 58, 76, 93, 96 |
| X-ray fiber diffraction | 214 |
| X-ray fluorescence holography | 150, 159, 171 |
| X-ray fluorescence microprobe | 257 |
| X-ray magnetic diffraction | 83 |
| X-ray microscopy | 222 |
| X-ray radiography | 198, 199 |
| X-ray Raman scattering | 76, 96 |
| X-ray reflectivity | 61, 172, 270 |
| X-ray topography | 145 |
| X-ray waveguide | 61, 125 |
| XAFS | 11, 14, 15, 26, 31, 46, 69, 120, 128, 131, 133, 134, 147, 148, 164, 165, 170, 258, 259 |
| XANES | 15, 16, 36, 41, 56, 62, 69, 132, 161, 164, 170, 227, 258, 259 |
| XMCD | 139, 153 |
| XPS | 25, 70, 71, 117, 138 |
| XRF | 15, 252, 255, 257 |
| |
| YTiO3 | 83 |
| |
| zeolite | 32, 66, 174 |
| zirconium fluoride | 26 |
| ZnF2 | 195 |
| ZnO | 57, 89 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2007
Copyright © 2009 by High Energy Accelerator Research Organization (KEK)