|
Photon Factory Activity Report 2004 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
2 |
|
| 2-5A system | 213 |
| 2D-SAXS-WAXS | 149, 154, 176, 186 |
| 2D-SAXS-WAXS-DSC | 175 |
|
|
| 4H-SiC | 55 |
|
|
| α-glucosidase | 212 |
| α-Mo2C | 76 |
| α-xylosidase | 224 |
| ab initio modeling | 234 |
| absolute calibration | 258 |
| absorption edge | 7 |
| absorption factor | 5 |
| acetic acid | 51 |
| acetyl-CoA | 250 |
| actin filament | 246 |
| actinides | 241 |
| acylamino-phospholipid | 222 |
| adsorption | 65, 80, 84, 169 |
| aerosol | 42, 50, 73 |
| aerosol OT | 50 |
| AFQ order | 138 |
| Ag | 74, 124, 183 |
| Ag L-edge XAFS | 26 |
| Ag(111) | 65 |
| aggregate structure | 266 |
| AgI | 173 |
| alanyl-tRNA synthetase | 214 |
| AlGaN | 69 |
| alkane crystallization | 175, 176, 186 |
| alkanethiol | 67 |
| alkene hydroamination | 15 |
| alkyltrimethylammomium | 20 |
| alloy | 118 |
| AlN | 166 |
| aluminium oxo-cluster | 41 |
| AlV2O4 | 155 |
| Alzheimer's disease | 217, 238 |
| amino acid discrimination | 214 |
| ammonia | 68, 71 |
| amorphous Al-O tunnel barrier | 147 |
| amphiphilic di-block copolymer | 128 |
| amphiphilic molecule | 127 |
| angiogenesis | 253 |
| angiography | 253 |
| angle dependence | 87 |
| angle-resolved photoemission spectroscopy(ARPES) | 61, 74, 76, 96, 100, 101 |
| animal study | 252 |
| ankyrin repeat | 213 |
| annealing | 62 |
| anomalous dispersion | 120 |
| anomalous dispersion effect | 134 |
| anomalous scattering | 191 |
| aqueous solution | 20 |
| Ar | 3 |
| archaea | 229, 236 |
| arteriogenesis | 253 |
| aspergillopepsin II | 234 |
| asymmetric block length | 158 |
| asymmetric catalysis | 14, 34 |
| asymmetry | 261 |
| atomic model | 244 |
| ATP synthase | 226, 226 |
| Au | 77 |
| Au(111) | 67 |
| Au(III) species | 84 |
| Auger electron spectroscopy | 265 |
| Auger process | 2 |
| Auger-photoelectron coincidence spectroscopy | 265 |
| autoionization | 6 |
|
|
| β-amyloid | 217 |
| BACE | 238 |
| BaFe12O19 | 202 |
| band bending | 77 |
| band offset | 63 |
| band structure | 74, 101 |
| bandwidth control system | 103 |
| BaTiO3 | 133 |
| Be | 6 |
| Bi | 125 |
| Bi1-xLaxNiO3 | 95 |
| bilayer | 127 |
| binaphthol | 14 |
| binuclear | 18 |
| bioinorganic chemistry | 24 |
| biomass | 180 |
| bis(oxazoline) | 34 |
| bisphosphonate | 227 |
| blend | 128 |
| block copolymers | 157, 158 |
| bromide | 25 |
| brushes | 167 |
| bulk electronic structure | 103 |
|
|
| Ca | 232 |
| Ca1-xSrxRuO3 | 103 |
| calcium aluminosilicate phase | 205 |
| carbon black | 189 |
| carbon dioxide | 8 |
| carbon nanotube | 115 |
| carbonate | 204 |
| carboxyltransferase | 250 |
| catalyst | 10, 13, 15, 17, 18, 19, 21, 44, 47, 51, 52, 56, 57, 68, 90, 118, 120, 126, 180, 255, 256 |
| CCD camera | 48, 193, 194, 195 |
| CCD X-ray detector | 233 |
| Ce | 56, 180, 241 |
| cells | 231, 232 |
| ceria | 47 |
| cerium oxide | 84 |
| chalcogenide glasses | 173 |
| chalcopyrite | 99 |
| charge ordering | 106, 155, 182, 188 |
| charge transfer excitation | 112 |
| chelating agent | 255, 256 |
| chemical composition | 192 |
| chemical effects | 272, 273 |
| chemical interaction | 75 |
| chemical mapping | 53, 75 |
| chemical potential | 106 |
| chemical speciation | 42 |
| chemical state mapping | 48 |
| chiral self-dimerization | 14 |
| chlorination | 29 |
| cholesterol | 230 |
| Cl | 140, 141 |
| cluster | 30, 31, 125, 146, 170 |
| cluster ion beam | 122 |
| Co | 27, 129 |
| CO adsorption | 80 |
| Co ions | 12, 107 |
| Co K edge | 107 |
| CO2 adsorption | 169 |
| Co/Pd(111) | 83 |
| coaxially symmetric mirror analyzer | 265 |
| coherence | 260 |
| coincidence measurement | 28, 60, 110, 263 |
| colicin D | 228 |
| combinatorial chemistry | 195 |
| comblike polymer | 167 |
| complex | 174 |
| compound semiconductors | 72 |
| compressibility | 197 |
| Compton scattering | 105, 110, 263 |
| conducting materials | 26 |
| conduction pathways | 173 |
| coordination | 24, 32, 40, 43, 117, 174, 255, 256 |
| coordination chemistry | 41 |
| coordination number | 170 |
| coordination polymer | 169 |
| core level | 79 |
| corrosion | 140, 141, 142 |
| Cr-porphyrin complex | 43 |
| cross sections | 8 |
| crossbridge | 244 |
| crystal engineering | 40 |
| crystal structure | 30, 31, 32, 200 |
| crystal truncation rod (CTR) | 88 |
| crystalline-crystalline diblock copolymer | 119 |
| crystallization | 62, 78 |
| crystallography | 210, 211, 212, 213, 214, 215, 216, 219, 224, 225, 226, 227, 228, 229, 239, 240, 248, 249, 250 |
| CT | 117, 231 |
| Cu | 34, 51 |
| Cu ion | 50 |
| Cu2O | 21 |
| Cu-3d | 113 |
| Cu-ZSM-5 | 44 |
| CuIr2S4 | 108 |
| cumene | 240 |
| CuO/ZrO2 | 21 |
| curly hair | 221 |
| CVD | 13 |
| CVTF | 257 |
| cylindrical mirror analyzer (CMA) | 71, 265 |
| cytochrome P450 | 239 |
|
|
| D2O | 233 |
| d-d excitation | 111 |
| DAC | 204, 205 |
| DAFS | 268 |
| dammin | 236 |
| decomposition | 10 |
| deconvolution | 261 |
| dehydrogenation catalysts | 116 |
| deNOx catalyst | 178 |
| density | 197 |
| depth | 85 |
| depth profile | 89 |
| depth-resolved XMCD | 80 |
| desferrioximine | 241 |
| designated framework | 169 |
| desorption induced by electronic transition (DIET) | 28, 60, 87, 91, 92, 93 |
| detector | 5, 160, 181, 258, 259, 263, 271 |
| detergent | 226 |
| dielectric material | 143 |
| Diels-Alder reaction | 34 |
| digital electronics | 273 |
| dilute effect | 187 |
| diluted magnetic semiconductors (DMS) | 27, 99, 132, 153 |
| dimer | 4 |
| dimethyl-dicyanoquinonediimine | 26 |
| dioxygenase | 240 |
| direct phenol synthesis | 13 |
| disease models | 252 |
| distorted porphyrin | 43 |
| doped | 27 |
| drawing | 149 |
| drug target | 227 |
| DSC-XRD | 127 |
| DXAFS | 44 |
| DyB2C2 | 138 |
| DyB4 | 137 |
|
|
| effect of loading | 22 |
| effective attenuation length | 85 |
| efflux pump | 248 |
| electroclinic | 172 |
| electrodeposit | 164 |
| electron degrees of freedom | 187, 188 |
| electron momentum density | 105, 110, 263 |
| electron transport | 249 |
| electronic transition | 207 |
| element mapping | 195 |
| elemental analysis | 75 |
| elongation | 246 |
| emulsion | 175, 176, 186 |
| energy dispersion | 100 |
| energy-dispersive X-ray diffraction | 193, 274 |
| environment | 36, 42, 73, 120 |
| enzyme catalysis | 215 |
| epitaxial Fe(001)/MgO(001)/Fe(001) magnetic tunnel junction | 148 |
| epoxidation catalyst | 22 |
| Equation of State | 208 |
| equation of state | 205 |
| equibiaxial | 149 |
| EXAFS | 10, 12, 13, 14, 15, 16, 17, 18, 20, 23, 24, 25, 27, 29, 34, 37, 38, 39, 43, 45, 46, 50, 51, 52, 57, 65, 84, 90, 116, 117, 118, 122, 125, 126, 129, 131, 133, 140, 145, 146, 150, 165, 169, 170, 173, 178, 180, 183, 189, 190, 217, 255, 256 |
| EXPEEM | 53 |
| externally heated DAC | 207 |
|
|
| fatty acid | 250 |
| Fe | 42, 270 |
| Fe XANES | 178 |
| FexCo1-xSi | 102 |
| Fe-MFI | 18, 178 |
| FePd | 162 |
| Fermi surface | 100, 101, 105 |
| ferredoxin reductase | 249 |
| ferromagnet | 114 |
| FeTiO3 | 98 |
| filled rubber | 266 |
| film growth | 72 |
| first-principles calculations | 166 |
| flavinylation | 215 |
| flavoprotein | 219 |
| fluctuation | 137 |
| fluorescence | 11 |
| fluorescence XAFS | 122 |
| fluorescent X-ray CT | 252 |
| fluorinated phthalocyanine | 28 |
| form factor | 201 |
| friction coefficient | 257 |
| fullerene | 115 |
| functional imaging | 252 |
| fungal denitrification | 239 |
| fusion reactor blanket | 37 |
|
|
| G6-amylase | 210 |
| GaAs | 203 |
| GaN | 129 |
| gate oxide | 79, 82 |
| gel | 120, 123, 126, 227 |
| geometrical frustration | 137 |
| GGA | 237, 238 |
| GH family 63 | 212 |
| GH-31 | 224 |
| GISAXS | 254 |
| glucooligosaccharide oxidase | 215 |
| glutamate dehydrogenase | 236 |
| glycoconjugated complex | 24 |
| GM3 | 230 |
| graphite | 152 |
|
|
| heavy ion irradiation | 130 |
| heavy metal | 120 |
| hematite | 171 |
| heme oxygenase | 211 |
| heterotetramer | 219 |
| Heusler-type shape memory alloy | 121 |
| hexagonal packed cylinder | 128 |
| hexavalent chromium | 135 |
| HfO2 | 62 |
| HgTe | 209 |
| high pressure | 19, 157, 168, 197, 200, 204, 205, 206, 207, 208, 209 |
| high resolution powder diffraction | 156 |
| high-k | 54, 59, 78 |
| host-guest | 9 |
| hydride transfer | 239 |
| hydrocarbon chain | 247 |
| hydrodesulfurization(HDS) | 19, 57, 255, 256 |
| hydrogen | 56, 197 |
| hydrogen bond | 222 |
| hydrogen bonding netwrok | 211 |
| hydrolase | 240 |
| hydrous melt | 206 |
| hyperfine magnetic field | 109 |
|
|
| I | 174 |
| ICD | 4 |
| IgNAR | 216 |
| ilmenite | 98 |
| imaging | 48, 193, 194, 195, 231, 232, 253, 262, 274 |
| imidazolium | 17 |
| immobilization | 17 |
| immunoglobulin new antigen receptors | 216 |
| impurities | 192 |
| in-situ observation | 9, 142, 206, 241 |
| in-situ photoemission spectroscopy | 96, 97, 101, 103, 132, 139 |
| in-situ XAFS | 11, 57, 117, 159 |
| incommensurate crystal | 161 |
| intensity ratios | 272 |
| intercalation | 174 |
| intercellular lipid matrix | 247 |
| interface | 55, 70, 89, 139, 142 |
| interface structure | 72 |
| interference fringe | 203 |
| interferometer | 262 |
| interferon | 213 |
| intermediate filament | 221, 242 |
| iodide | 20 |
| iodine | 123 |
| ionic conduction | 173 |
| ionic liquid | 17 |
| IP | 160 |
| Ir 5d | 108 |
| iron(III) complexes | 40 |
| irradiation induced diffusion | 130 |
| ischemia | 253 |
| isometric contraction | 246 |
|
|
| keratin | 221, 242 |
| kinetics | 44 |
| Kosa | 73 |
| Kratky plot | 218 |
|
|
| La1-xSrxCoO3 | 107 |
| La1-xSrxFeO3 | 96 |
| lamellar phase | 33 |
| lamellar structure | 247 |
| laser excited state | 45 |
| laser trap | 269 |
| laser-MBE | 96, 97 |
| lattice distortion | 203 |
| lattice strain | 54 |
| lead fluoride | 37 |
| line width | 261 |
| liquid | 209 |
| liquid crystal | 172 |
| liquid Rb | 207 |
| lithium fluoride | 37 |
| Local structure | 43 |
| Lon protease | 196 |
| low-dimensional material | 152 |
| low-k | 254 |
|
|
| M-type Ba-ferrite | 202 |
| macromonomer | 167 |
| magnetic anisotropy | 80, 83 |
| magnetic anisotropy energy | 64 |
| magnetic diffraction | 201 |
| magnetic domain structure | 109 |
| magnetic scattering | 171 |
| magnetic structure | 202 |
| magnetic thin film | 83 |
| magnetism | 64, 145 |
| magnetization | 164, 270 |
| magnetoelectric effect | 136 |
| magnetoelectric x-ray scattering | 136 |
| magnetostriction | 270 |
| maltohexaose | 210 |
| manganese oxides | 10 |
| manganite | 70, 101, 106 |
| mapping | 193, 194, 232 |
| martensitic transformation | 121, 162 |
| MCD of XES | 104 |
| MCP | 113 |
| MCXD | 164 |
| melt structure | 206 |
| melting | 119 |
| membrane protein | 248 |
| meridional reflection | 246, 251 |
| Merino wool | 242 |
| mesoporous silica | 159 |
| mesoporous titania | 144 |
| metal binding | 217 |
| metal colloids | 117 |
| Metal insulator transition | 190 |
| metal ion | 17 |
| metal nanoparticles | 185 |
| metal oxide semiconductor(MOS) | 54, 62, 82 |
| metal-insulator transition | 95, 108, 151 |
| metallic Cu | 16 |
| metallocsilicate | 178 |
| metallosurfactants | 183 |
| metastability | 222 |
| meteorite | 150 |
| methane | 56 |
| methanol dehydrogenation | 16 |
| micelle | 20 |
| microbeam | 163, 177, 242, 269 |
| microbeam 2D-SAXS-WAXS | 176 |
| micropahse separation | 157, 158 |
| microscope | 194 |
| migration | 241 |
| Mn | 55 |
| MnGeP2 | 99 |
| MnP | 99 |
| Mo oxide | 159 |
| modeling | 236, 243 |
| modification | 51 |
| molecular magnet | 146 |
| molecular nitrogen | 8 |
| molecular oxygen | 13 |
| molten salt | 29, 37, 38, 39 |
| molybdenum catlayst | 144 |
| monatomic bcc-Co(001) layer | 147 |
| monatomic bcc-Fe(001) layer | 148 |
| MoO3/MgO | 22 |
| morphology | 157, 158 |
| motor protein | 245 |
| multianode photomultiplier(MAPMT) | 259 |
| multidrug resistance | 248 |
| multilayer | 89, 267 |
| muscle | 233, 243, 246 |
| myosin | 244, 245 |
|
|
| nano-clustering silica | 254 |
| nano-islands | 49 |
| nano-metal | 170 |
| nano-structured Fe | 170 |
| nanocluster | 16, 126 |
| nanoparticle | 27, 117, 118, 124, 165, 183, 228 |
| nanosolution | 50 |
| nanostructure | 164 |
| Nb oxide | 122 |
| Nb2O5 | 122 |
| NC-AFM | 75 |
| Nd1-xSrxMnO3 | 97 |
| Ne | 4 |
| near edge X-ray absorption fine structure (NEXAFS) | 65, 66, 67, 68, 87, 91, 92, 93, 152 |
| nearest-neighbor distance | 116 |
| new technique | 75, 110, 261, 262, 263, 265, 266, 267, 269, 274 |
| Ni | 23, 52, 90, 94, 140, 141, 164 |
| Ni2P | 19 |
| Ni-Mn | 131 |
| NiCr2O4 | 156 |
| NiMo catalyst | 255, 256 |
| nitrous oxide | 18 |
| NiW catalyst | 255, 256 |
| NO dimer | 66 |
| NO reduction | 66 |
| noble metal | 118, 165 |
| non-linear effect | 260 |
| non-overlap | 243 |
| noncentrosymmetric site | 136 |
| nonmevalonate pathway | 227 |
| norbergite | 200 |
| nuclear fuel cycle | 29 |
| nuclear resonance | 7 |
| nuclear resonant scattering | 109, 271 |
|
|
| ohmic contact | 69 |
| operando XAFS | 19 |
| orbital ordering | 114, 187, 188 |
| ordered structure | 81 |
| organic charge transfer salt | 26 |
| organic radical ferromagnet | 168 |
| organic superconductor | 161 |
| orientation | 154, 157 |
| oxidation | 76, 86 |
| oxidation states | 241 |
| oxidative coupling | 14 |
| oxide | 15 |
| oxynitride | 79 |
| ozone | 10 |
|
|
| partial density of stats | 55 |
| pathogenicity | 225 |
| Pd complex | 15 |
| Pd nanocluster | 126 |
| Pd-Pt | 57 |
| Pd/Si system | 130 |
| peak profile | 261 |
| peapod | 115 |
| PEEM | 53 |
| perovskite oxide | 114 |
| phase behavior | 222 |
| phase control | 3 |
| phase transition | 156, 204, 207, 208 |
| phase-contrast | 262 |
| photo sensitivity | 26 |
| photo-metathesis | 159 |
| photocatalyst | 56, 159, 191 |
| photodiode | 5, 271 |
| photoelectron diffraction | 67, 83 |
| photoelectron spectroscopy | 58, 265 |
| photoemission spectroscopy | 47, 49, 59, 62, 63, 69, 70, 72, 77, 78, 79, 82, 85, 94, 95, 97, 98, 106, 108, 115, 130, 152 |
| photoinduced phase transition | 145 |
| photoionization | 6 |
| photon stimulated desorption (PSD) | 60, 71, 87, 91, 92, 93 |
| Photoreduction | 124 |
| plasma | 181 |
| plasma diagnostics | 258 |
| polarimeter | 259, 267 |
| polarization | 259 |
| polarization dependenc | 52 |
| poly(ε-caprolactone) | 154 |
| polyamide | 174 |
| polycrystalline-Si electrodes | 59 |
| polycrystals | 194, 274 |
| polymer | 119, 128, 134, 149, 154, 157, 158, 163, 174 |
| polyoxometalate | 30, 31 |
| polypropylene | 149 |
| post-collision interaction | 2 |
| post-deposition annealing | 54 |
| powder diffraction | 155, 193, 194, 261, 274 |
| precursor | 66, 198 |
| pressure effects | 168 |
| pretreatments | 90 |
| projection | 231 |
| projection-type microscope | 193, 195 |
| protein folding | 235 |
| prussian blue | 145 |
| pseudomonas | 248 |
| pseudomonas aeruginosa | 225 |
| Pt/C | 116 |
| PTRF-XAFS | 51, 52 |
| PtSn alloys | 189 |
| PtSn catalysts | 189 |
| pulley effect | 184 |
| pyrochemical reprocessing | 38 |
|
|
| quadrupole moment | 137 |
| quantitative analysis | 46 |
|
|
| Raman scattering | 2, 111, 112 |
| rare earth | 104, 133, 201 |
| rare earth fluoride | 38 |
| rat | 253 |
| RE-TM | 113 |
| reaction | 68, 211 |
| reaction intermediate | 249 |
| reconstruction | 86, 231 |
| reductase | 240 |
| reduction | 44 |
| Resonant inelastic X-ray scattering (RIXS) | 112 |
| resonant photoemission spectroscopy | 153 |
| resonant Raman scattering | 2 |
| resonant X-ray magnetic scattering | 202 |
| resonant X-ray scattering | 137, 138, 151, 171, 182, 187, 188, 203 |
| reverse micelle | 50, 183 |
| Rh | 66, 68, 180 |
| Rhenium cluster | 13 |
| rheology | 33 |
| ribonuclease | 228 |
| ribosomal protein | 223 |
| Rietveld analysis | 198 |
| ringwoodite | 197 |
| room-temperature ferromagnetism | 99, 153 |
| Ru complex | 45 |
| Rydberg | 1, 3 |
| Rydberg state | 6 |
|
|
| sarcosine oxidase | 219 |
| satellite | 1 |
| second harmonic generation | 260 |
| sediment | 35, 36 |
| selective oxidation | 13 |
| selectivity | 90 |
| self assemble nano-structure | 127, 128 |
| self organization | 32 |
| self-assemble | 177 |
| self-assembled monolayer (SAM) | 65, 91, 92, 93 |
| self-assembly | 9 |
| semiconductor detector | 181 |
| semicrystalline block copolymer | 154 |
| SEXAFS | 65 |
| SH3 | 235 |
| shark antibody | 216 |
| shear | 33 |
| short range order | 182 |
| Si | 49, 77, 79, 82, 110 |
| Si(111)-6x1-Ag | 88 |
| Si-AD | 7 |
| Si-APD | 271 |
| SiC | 86 |
| silica | 177 |
| silicate melt | 206 |
| silicon carbide | 86, 152 |
| silicon nitride | 198 |
| silicon-on-insulator(SOI) | 81, 110 |
| simultaneous measurement | 222 |
| SiN/Si | 63 |
| single crystal X-ray diffraction | 200 |
| single crystalline diamond capsule | 206 |
| SiO2 | 57, 81, 143 |
| site-specific ion desorption | 28 |
| skeletal muscle | 233, 251 |
| skin | 247 |
| skutterudite | 151 |
| slide-ring gel | 184 |
| slow stretch | 251 |
| small angle X-ray scattering(SAXS) | 5, 33, 119, 120, 123, 124, 127, 128, 134, 149, 154, 157, 158, 163, 167, 174, 175, 176, 184, 185, 186, 218, 220, 221, 222, 223, 230, 233, 234, 235, 236, 242, 243, 244, 246, 247, 251, 254, 266, 269 |
| small-angle scattering | 245 |
| smectic | 172 |
| soft X-ray emission | 89 |
| soft X-ray fluorescence spectroscopy | 102 |
| solar primordial material | 150 |
| solution surface | 25 |
| solution x-ray scattering | 218 |
| solvent extraction | 23 |
| sonochemistry | 165 |
| spherulite | 163 |
| sphingomyeline | 230 |
| spin | 201 |
| spin orientations | 202 |
| spin reorientation transition | 64 |
| spinel compound | 155, 156 |
| SQUID | 104 |
| SrRuO3 | 139 |
| stability | 272 |
| standard | 46 |
| standing wave | 89 |
| Stark beats | 3 |
| statistical errors | 272 |
| steam reforming of methanol | 21 |
| steel | 140, 141, 142, 160 |
| step edge | 52 |
| STM | 49 |
| strain | 160, 194, 274 |
| stratum corneum | 247 |
| stress | 160, 194, 274 |
| strongly correlated system | 111, 112 |
| strontium fluoride | 39 |
| structural change | 10 |
| structural modulation | 161 |
| structural transition | 156 |
| structure | 133, 209, 221, 242 |
| structure analysis | 88 |
| STS | 49 |
| substrate complex | 210 |
| sulfer | 36 |
| sulfide | 36 |
| sulfur | 73 |
| super ionic transition | 37, 39 |
| supercritical | 5 |
| supercritical carbon dioxide | 117, 124 |
| supercritical fluid | 118 |
| supercritical water | 12 |
| supported catalyst | 144 |
| supported metal complex | 15 |
| supramolecular chemistry | 40, 41 |
| supramolecule | 9 |
| surface | 60, 86 |
| surface electronic structure | 61 |
| surface magnetism | 80 |
| surface photochemistry | 91, 92, 93 |
| surface state | 49 |
| surface structure | 83 |
| surface transport phenomena | 77 |
| surface X-ray diffraction | 86, 88 |
| surfactant | 16, 25, 33 |
| SX spectrograph | 258 |
| SXFS | 55 |
|
|
| TBP | 229 |
| temperature dependence | 44, 121 |
| thick filament | 243 |
| thin film | 64, 81, 85, 96, 97, 103, 122 |
| threshold ionization | 2 |
| threshold photoelectron | 1 |
| Ti | 69 |
| Ti compounds | 111, 112 |
| tight-binding calculation | 96 |
| time-resolved SAXS | 185, 266 |
| time-resolved X-ray micro-diffraction | 172 |
| time-resolved XAFS | 45 |
| TiO2(110) | 51, 52 |
| titania | 11 |
| Tl/Ge(111) | 61 |
| TOF measurement | 6 |
| total-reflection XAFS | 25 |
| trans-editing | 214 |
| transcription factors | 220, 225, 229 |
| transition temperature | 168 |
| transporter | 248 |
| tribofilm | 257 |
| trigger factor | 218 |
| tRNA | 228 |
| tungsten carbide | 58 |
| tungsten surface | 58 |
| tunnel magnetoresistance (TMR) | 147, 148 |
| tunneling magnetoresistance(TMR) | 70 |
|
|
| ubiquitin | 237 |
| ULSI device | 59 |
| unfolding | 234 |
| unstable intermediate | 9 |
|
|
| V | 11 |
| V dimer | 14 |
| valence fluctuation | 182 |
| valence-band satellite | 94 |
| vertical distribution | 36 |
| vicinal | 77 |
| VUV irradiation | 143 |
|
|
| water | 60 |
| WAXS | 149, 154, 163 |
| wurtzite | 191 |
|
|
| X-ray absorption edge | 75 |
| X-ray absorption spectroscopy (XAS) | 147, 148 |
| X-ray amplifier | 199 |
| X-ray beam confinement | 199 |
| X-ray condenser | 199 |
| X-ray depolarizer | 264 |
| X-ray diagnostics | 181 |
| X-ray diffraction(XRD) | 30, 31, 32, 54, 131, 209, 233, 246 |
| X-ray ellipsometer | 179, 264 |
| X-ray emission(XES) | 108, 112 |
| X-ray fluorescence | 48, 192, 195, 273 |
| X-ray magnetic circular dichroism (XMCD) | 147, 148 |
| X-ray magnetic diffraction | 114 |
| X-ray microscopy | 231, 232 |
| X-ray phase retarder | 264 |
| X-ray topography | 203 |
| X-ray waveguide | 199 |
| XANES | 22, 42, 43, 56, 65, 135, 140, 141, 166, 190 |
| Xenobiotics | 240 |
| XMLD | 179 |
| XPD | 67 |
| XPS | 47, 67, 85, 130, 152 |
| xyloglucan | 123 |
|
|
| YgjK | 212 |
| yttria | 47 |
|
|
| zirconia | 47 |
| ZnO | 27, 74, 208 |
| zooming tube | 232 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2004
Copyright © 2005 by High Energy Accelerator Research Organization (KEK)