|
Photon Factory Activity Report 2005 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
2 | |
| 2D SAXS-WAXS-DSC | 106 |
| |
| 3-Xylanase | 232 |
| 3D local structure | 132 |
| 3d orbital | 42 |
| 3d transition metal | 104 |
| 3d-2p X-ray emission spectroscopy | 84 |
| |
| 5'-methyladenosine nucleosidase | 219 |
| |
| α-aminoadipate aminotransferase | 196 |
| absolute sensitivity | 248 |
| absorption edge | 136 |
| acetic anhydride | 62 |
| acidity | 48 |
| adsorption | 4, 65 |
| adsorption of hydrogen | 39 |
| aerosol | 61, 191, 192, 242 |
| AFM | 52 |
| Ag(DCNQI)2 | 12 |
| AgBr | 141 |
| aggregates structural | 237 |
| air/solution interface | 11, 11 |
| akaganeite | 102 |
| Al2O3 | 89 |
| Al-Li alloy | 77 |
| albite | 185 |
| algae | 160 |
| alkadiyne | 63 |
| alkaline-earth atom | 3 |
| alkane crystallization | 106, 114 |
| amalgam | 202 |
| AMF | 195 |
| aminoacyl-tRNA synthetase | 224 |
| aminoacylation | 224 |
| amorphous | 107, 108, 119 |
| amyloidotic disease | 204 |
| angiogenesis | 239 |
| Angle Resolved Total Reflection Fluorescence-XAFS | 74 |
| angle-resolved photoelectron spectroscopy (ARPES) | 49, 54, 59 |
| anisotropic photopolymerization | 53 |
| annealing | 45, 46 |
| anomalous scattering | 173 |
| anomalous X-ray dispersion | 105 |
| anomalous X-ray scattering (AXS) | 113 |
| anticodon | 203 |
| AOT | 61, 191, 192 |
| apatite | 58 |
| aqueous solution | 36 |
| Arabidopsis thaliana | 219 |
| arginyl-tRNA synthetase | 203 |
| arteriogenesis | 239 |
| articular cartilage | 238 |
| aspartate kinase | 228 |
| Aspergillus niger | 218 |
| asymmetric catalysis | 15 |
| atomic force | 73 |
| ATPsynthase | 230 |
| ATS | 136 |
| Au | 74 |
| Auger decay | 1, 5 |
| Auger spectroscopy | 1 |
| |
| β-1 | 232 |
| β-glucosidase | 229 |
| β-helix | 218 |
| Ba ferrite | 174 |
| band offset | 89 |
| base oil | 193 |
| BaTiO3 | 79, 100 |
| bimetallic | 28 |
| bimetallic cluster | 38 |
| biomass | 21 |
| bismuth (Bi) | 112 |
| block copolymer | 142, 143, 153 |
| boron nitride | 26 |
| Borrmann effect | 169 |
| broad range substrate specificity | 196 |
| bromide | 36, 40 |
| bromination | 146 |
| bulk modulus | 170 |
| |
| C60 fullerene | 85 |
| calmodulin | 233 |
| carbon nanotube | 85 |
| carbonyl reductaze | 164 |
| carboxylate | 20 |
| catalyst | 7, 8, 15, 16, 21, 25, 27, 28, 29, 34, 35, 37, 38, 39, 42, 44, 48, 50, 51, 58, 66, 110, 121, 128, 137, 149 |
| catalyst | 155 |
| CCD | 250 |
| Ce | 21 |
| Ce0.8Zr0.2O2 | 176 |
| CeO2-TiO2 | 34 |
| cerebral perfusion | 241 |
| ceria | 151 |
| charge ordering | 98, 99 |
| chelating agent | 16 |
| chemical bond | 73 |
| chemical mapping | 73 |
| chemical potential pinning | 99 |
| chemical shift | 94 |
| Chipman's method | 252 |
| chloride | 102 |
| chromium (Cr) | 121 |
| cisplatin | 120 |
| citric acid | 72 |
| clathrate | 186 |
| clip domain | 179 |
| cluster | 7, 112 |
| cluster calculation | 84 |
| cluster model analysis | 104 |
| CMR | 98 |
| CO | 66 |
| co-extraction | 9 |
| Co-Mo sulfide catalyst | 8, 44 |
| Co-W sulfide catalyst | 16 |
| cobalt (Co) | 68, 172 |
| cobalt citrate | 138 |
| cobaltite | 173, 177 |
| codon usage | 203 |
| coherence | 249 |
| coincidence | 1, 2, 5, 55 |
| colicin | 210 |
| comblike polymer | 245 |
| combustion | 34 |
| complex | 17, 40 |
| Compton scattering | 77 |
| concerted inhibition | 228 |
| conductivity | 30 |
| coordination chemistry | 10 |
| copper ion | 69 |
| core excitation | 60 |
| coronary angiography | 239 |
| coronary ligation | 239 |
| corrosion | 154 |
| Corynebacterium | 228 |
| counting loss | 252 |
| counting method | 252 |
| Cr(III) | 18 |
| Cr(VI) | 18 |
| critical angle | 152 |
| crossbridge | 234 |
| cruciate ligament | 238 |
| crystal structure | 160, 161, 162, 163, 164, 203, 211, 212, 213 |
| crystal truncation rod (CTR) | 56 |
| crystallin | 220 |
| crystallization | 107, 108, 153, 230 |
| CT | 201 |
| Cu | 54, 62 |
| CuAlMCM-41 | 69 |
| CuIr2S4 | 101 |
| CuMCM-41 | 69 |
| CuMFI | 57, 69 |
| CVD method | 7 |
| CVTF | 246 |
| cyclopropanation | 15 |
| cylindrical microdomains | 143 |
| cytoplasmic domain | 233 |
| |
| d-d excitation | 79, 100 |
| DAC | 188 |
| DAMMIN | 200, 214 |
| dead time | 252 |
| deaminase | 209 |
| decagonal quasicrystal | 84 |
| degradation | 111 |
| dehydration | 184 |
| dehydroaromatization | 110 |
| dehydrogenation | 38 |
| dendrimer | 118 |
| depth-resolved | 67 |
| desorption | 111 |
| detergent | 230 |
| di-block copolymer | 144, 145 |
| diacetylene | 53 |
| dielectrics | 82 |
| diffraction-enhanced imaging (DEI) | 238, 240, 254 |
| diluted magnetic semiconductor (DMS) | 78, 104, 130, 132 |
| direct methanol fuel cell (DMFC) | 28 |
| disclination | 123 |
| dissociation | 2 |
| DNA | 30 |
| DNA repair | 162 |
| DNA-binding protein | 197, 198 |
| dodecyltrimethylammonium bromide | 11 |
| domain fusion | 209 |
| dopant | 140 |
| doped-ceria | 103 |
| double ionization | 2, 3 |
| drawing | 156 |
| DSC | 150 |
| DXAFS | 35, 39, 192, 253 |
| |
| EF-hand protein | 199, 200 |
| effective charge | 94 |
| Einstein frequency | 80 |
| electric structure | 82, 100 |
| electron correlation | 1, 3 |
| electron density distribution | 139, 165, 166, 167, 168, 176 |
| electron excitation | 73 |
| electronic correlation | 77 |
| electronic structure | 49, 84 |
| element specific magnetic hysteresis | 71 |
| elemental distribution | 202 |
| elemental mapping | 217 |
| emulsion | 106, 114 |
| environment of sea | 23 |
| enzyme | 205 |
| enzyme action | 212 |
| epitaxial strain | 91 |
| ErCo2 | 135 |
| Eu anomaly | 244 |
| europium (Eu) | 244 |
| EXAFS | 4, 7, 9, 10, 14, 20, 21, 22, 25, 27, 28, 34, 36, 37, 40, 43, 44, 48, 51, 57, 58, 61, 62, 64, 69, 72, 74, 80, 103, 109, 110, 112, 119, 120, 122, 128, 141, 146, 147, 148, 149, 155, 172 |
| EXAFS | 17 |
| exfoliative toxin | 161 |
| extended dead-time model | 252 |
| |
| Fe2P | 81 |
| FexCo1-xSi pseudobinary alloy | 94 |
| Fe-based binary alloys | 102 |
| Fe/Co | 71 |
| feedback inhibition | 228 |
| ferredoxin | 194 |
| ferrimagnetic ordering | 134, 135 |
| ferrolectrics | 100 |
| FeS | 188 |
| FeSi | 188 |
| fiber diffraction | 234, 236 |
| fiber suspension | 236 |
| flagellar axonemes | 236 |
| flavoprotein | 213 |
| flow alignment | 236 |
| fluorescence | 2, 42 |
| fluorescence method | 43 |
| fluorescent X-ray CT | 241 |
| fluoride melts | 26 |
| form factor | 159 |
| fractal | 87 |
| friction coefficient | 246 |
| FTY720 | 237 |
| fuel cell | 29 |
| |
| G6-amylase | 212 |
| Ga | 50 |
| GaAs | 180, 249 |
| gadolinium (Gd) | 159 |
| GaN | 78 |
| gate dielectrics | 89 |
| gate insulator | 45 |
| Gd | 243 |
| Ge nano-island | 49 |
| gene silencing | 226 |
| geometrical frustration | 116 |
| germanium (Ge) | 59 |
| GeSi | 75 |
| gibbsite | 171 |
| glutaminyl cyclase | 204 |
| glycoconjugated bioactive complex | 120 |
| glycoprotein | 218 |
| gold (Au) | 47 |
| gp41 | 233 |
| grancalcin | 199 |
| grazing-incidence SAXS (GISAXS) | 75, 157 |
| grazing-incidence X-ray diffraction (GIXD) | 47, 76 |
| GTP | 178 |
| |
| halophilic archaea | 194 |
| helical magnetism | 115 |
| heteropoly acid | 37 |
| hexamer | 229 |
| HfO2 | 45, 152 |
| high mannose | 160 |
| high pressure | 163, 171, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190 |
| high-k | 46, 56, 152 |
| histone modification | 222 |
| HIV-1 | 233 |
| HoB4 | 116 |
| host-guest | 19, 31, 32 |
| human hair | 216 |
| human transcription factor NF-ΚB | 197, 198 |
| humic acid | 18 |
| hydration | 4, 40 |
| hydration structure | 36, 61 |
| hydrodeselenium reaction | 44 |
| hydrodesulfurization (HDS) | 8, 16, 72 |
| hydroformylation | 37 |
| hydrothermal alternation | 184 |
| hydrothermal deposit | 244 |
| hydrous melt | 183 |
| hysteresis | 126 |
| |
| i n situ | 155 |
| I-VII compound | 181 |
| II-VI compound | 182 |
| iin-situ XAFS | 149 |
| iinterface | 96 |
| ilmenite | 83 |
| imaging | 201, 217, 238, 239, 240, 241, 251, 254 |
| immunosuppressant | 237 |
| in situ | 16, 35, 154, 183 |
| in-situ observation | 19 |
| in-situ X-ray diffraction | 158 |
| in-situ XAFS | 66 |
| in-vivo imaging | 241 |
| incommensurate crystal | 86 |
| inhibitor | 195 |
| innate immunity | 179 |
| interface | 90, 125 |
| interface reaction | 56 |
| interface state | 70 |
| interfacial reaction | 46 |
| interference fringe | 180 |
| interferometer | 251 |
| intermediate filament | 216 |
| ion-implantation | 172 |
| ionic conducting glass | 141 |
| ionomer | 129 |
| IP | 127 |
| IR | 66 |
| iridium (Ir) | 38 |
| iron (Fe) | 40, 125, 126, 131 |
| iron oxyhydroxide | 20 |
| iron uptake system | 231 |
| isopullulanase | 218 |
| IV-VI compound | 189 |
| |
| Jeffery orbits | 236 |
| |
| keap1 | 227 |
| kinetics | 184, 185 |
| KMSAS | 224 |
| KTiOPO4 | 166 |
| kynurenine aminotransferase | 196 |
| |
| L-cysteine | 10 |
| La1-xSrxMnO3 | 91, 97 |
| LaAlO3 | 89 |
| LaBi | 187 |
| lactate oxidase | 211 |
| lamellar | 33 |
| lanthanide contraction | 14 |
| lanthanum niobium titanate | 139 |
| large cavity | 213 |
| laser MBE | 91, 97, 99 |
| lattice defect | 221 |
| lattice distortion | 180 |
| Laves phase | 135, 159 |
| LB | 53 |
| LB membrane | 145 |
| LED | 147 |
| light element | 217 |
| LiMn2O4 | 165 |
| linear compressibility | 170 |
| linear dichroism (LD) | 97 |
| liquid | 181, 182, 189 |
| liquid crystal | 123, 140, 144 |
| liquid-helium cryostat | 117 |
| local structure | 103, 113, 141, 172 |
| lower mantle | 190 |
| LSM | 250 |
| lung cancer | 227, 240 |
| lysine biosynthesis | 196 |
| lysozyme | 208 |
| |
| μGISAXS | 157 |
| macromonomer | 245 |
| MAD | 226, 232 |
| magma | 183 |
| magnesium vanadate | 128 |
| magnetic anisotropy | 67, 68 |
| magnetic Compton profile | 92, 131 |
| magnetic ordering | 174 |
| magnetic thin film | 67 |
| magnetism | 159 |
| magnetite | 136 |
| magnetization | 126 |
| magnetoelectric effect | 115 |
| magnetoelectrics | 124 |
| magnetoresistance | 124 |
| magnetostriction | 115, 126 |
| mammalian cell | 201, 217 |
| manganite | 90, 98 |
| maximum-entropy method | 167 |
| MCM-41 | 38, 69 |
| mechanical alloying | 119 |
| mechanism | 185 |
| melt structure | 183 |
| meniscus | 238 |
| mercury(II) (Hg) | 10 |
| mesoporous | 20 |
| mesoporous ethylenesilica | 146 |
| mesoporous silica | 37, 158 |
| metal colloid | 191, 192 |
| metal nanoparticle | 118 |
| metal-insulator transition | 80, 96 |
| metal-molecule interface | 70 |
| metallic glass | 113 |
| metalloporphyrin | 17 |
| metastasis | 195 |
| methane coupling | 50 |
| methyl-CpG-binding protein | 226 |
| MgNi alloy | 119 |
| micelle | 36 |
| microbeam | 123 |
| microbeam SAXS | 114, 157, 216 |
| microemulsion | 109 |
| microporous | 20 |
| microstructure | 76 |
| MIGS | 63 |
| mineral | 244 |
| Mo K-edge XAFS | 110 |
| Mo/Al2O3 | 25 |
| Mo/SiO2 | 25 |
| modified single crystal metal oxide surface | 62 |
| molecular imaging | 241 |
| molecular orientation | 52 |
| molten globule | 206 |
| molten salt | 13, 14, 43 |
| molten salts | 24 |
| molybdenum carbide | 110 |
| momentum density | 77 |
| monocrystalline | 76 |
| monovalent copper ion | 57 |
| morphology | 129 |
| morphology formation | 107, 108 |
| motor protein | 235 |
| Mott insulator | 96 |
| mouse brain | 241 |
| MRG15 | 222 |
| mTOR | 178 |
| muitiply excited molecule | 2 |
| multi-extreme environments | 81 |
| multilayer | 125, 131, 145 |
| multivalent fluoride | 14 |
| muscle contraction | 234 |
| myosin | 234, 235 |
| |
| N2 | 2 |
| N2 adsorption | 57 |
| Nafion | 105 |
| nano-cylinder | 144 |
| nano-island | 49 |
| nanocarbon | 4 |
| nanoparticle | 28, 79, 93, 109, 118, 122, 151, 168 |
| nanosolution | 61 |
| nanospace | 4 |
| NbN catalyst | 149 |
| NC-AFM | 73 |
| Ne | 5 |
| nematic | 123 |
| new furnace | 167 |
| new lectin family | 160 |
| NEXAFS | 52, 53, 63, 88 |
| Ni | 21, 67 |
| Ni colloid | 122 |
| Ni nano-particle | 122 |
| nickel (Ni) | 22 |
| nickel oxide | 155 |
| NiCr2O4 | 134 |
| NiMo | 72 |
| nitride | 7 |
| nitriding process | 149 |
| nitrogen | 2 |
| NO | 65 |
| NO adsorption | 8 |
| non-Newtonian polymer | 236 |
| nonlinear effect | 249 |
| nonlinear optical crystal | 166 |
| norbergite | 163 |
| Nrf2 | 227 |
| nuclear forward scattering (NFS) | 81, 93 |
| nuclear fuel cycle | 13 |
| nuclear resonant scattering | 93, 247 |
| nucleotide synthesis | 223 |
| |
| O2 | 6 |
| octyltrimethylammonium bromide | 36 |
| olymer blend | 108 |
| one-dimension | 59 |
| oral mucosa | 202 |
| orbital ordering | 87, 92, 133 |
| ordered domain | 76 |
| organic semiconductor | 70 |
| organic superconductor | 86 |
| orientation | 88 |
| osmium (Os) | 51 |
| osteoporosis | 204 |
| oxidation damage | 162 |
| oxidation-reduction state | 23 |
| oxide | 130 |
| |
| p65/L-plastin | 200 |
| partitioning | 190 |
| Pd-Pt | 66 |
| PDA | 253 |
| peapod | 85 |
| pentacene ultrathin film | 52 |
| peptide | 32 |
| periodic mesoporous organosilica (PMO) | 146 |
| perovskite | 115, 177, 190 |
| peroxoniobic acid | 149 |
| perpendicular orientation | 143 |
| phase G | 170 |
| phase separation | 107, 108 |
| phase transition | 124, 177, 187, 188 |
| phase-contrast | 251 |
| phenol | 35 |
| photocatalyst | 50, 121, 137 |
| photoelectron photoion coincidence spectroscopy | 55 |
| photoemission spectroscopy (PES) | 45, 46, 59, 78, 83, 85, 89, 90, 91, 95, 96, 98, 99, 104 |
| photoionization | 3, 5 |
| photoluminescence | 25 |
| photon-stimulated ion desorption (PSID) | 55, 60, 111 |
| photopolymerization | 63 |
| photosensitivity | 12 |
| plagioclase | 185 |
| plant | 219 |
| platinum (Pt) | 120 |
| polarimeter | 250 |
| polarization dependence | 88 |
| poly(caprolactone) | 153 |
| poly-Si | 46 |
| polybutadiene | 153 |
| polyethylene | 129 |
| polymer blend | 107 |
| polyoxometalate | 175 |
| polypropylene | 156 |
| positional disorder | 137 |
| post-collision interaction (PCI) | 1, 6 |
| posttranslational modification | 204 |
| powder diffraction | 134, 135, 167, 176, 177 |
| Pr1-xCaxMnO3 thin film | 99 |
| precursor | 138 |
| preferential CO oxidation | 29 |
| pressure effect | 133 |
| probe molecule | 8 |
| projection microscopy | 201 |
| propane conversion | 128 |
| protein | 205 |
| protein crystal | 221 |
| protein crystallography | 160, 161, 162, 164, 178, 179, 195, 196, 203, 204, 209, 210, 211, 212, 213, 218, 219, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232 |
| protein folding | 206, 207, 208 |
| protein-DNA complex | 226 |
| PROX | 25 |
| PRPP | 223 |
| Pt | 29 |
| Pt perpendicular anisotropy | 131 |
| PTRF-XAFS | 62 |
| pyrochemical process | 24 |
| pyrochemical reprocessing | 43 |
| pyroglutamate | 204 |
| |
| quadrupole ordering | 124 |
| quadrupole transition | 136 |
| quantitative analysis | 41 |
| quantum dot | 75 |
| quaternary structure | 205 |
| |
| rail | 127 |
| rare earth fluorides | 24 |
| Re | 35 |
| re-processing | 9 |
| recognition | 31, 32 |
| reconstruction | 201 |
| reductase | 209 |
| reduction | 18 |
| reduction behavior | 69 |
| reflectivity | 145 |
| reforming | 48 |
| refractive angle | 254 |
| residual order | 56 |
| resist | 111 |
| resonant Auger spectroscopy | 30 |
| resonant diffraction | 137 |
| resonant photoemission | 83, 104 |
| resonant Raman scattering | 6 |
| resonant X-ray magnetic scattering (RXMS) | 174 |
| resonant X-ray scattering | 136, 180 |
| resonant X-ray scattering (RXS) | 87, 116 |
| reverse micelle | 61, 109 |
| Rh | 37 |
| rheology | 33 |
| rhodium catalyst | 37 |
| Rietveld analysis | 167, 168 |
| rodlike molecule | 245 |
| Rossmann fold | 224 |
| rust | 102, 154 |
| RVO3 | 133 |
| |
| satellite | 5 |
| SAXS | 33, 75, 105, 107, 108, 114, 118, 129, 142, 143, 144, 145, 150, 153, 156, 157, 191, 194, 197, 198, 200, 205, 206, 207, 208, 214, 215, 216, 220, 233, 237, 245 |
| second harmonic generation | 249 |
| sediment | 23 |
| selection | 42 |
| selective oxidation | 121 |
| selective oxidation of CO in H2 | 25 |
| selenium (Se) | 202 |
| selenophene | 44 |
| self-assembled monolayer (SAM) | 60 |
| self-assembly | 19, 31, 32 |
| self-assembly process | 158 |
| semiconductor | 112, 147 |
| sequential | 156 |
| serpentine | 184 |
| shear | 33 |
| short-chain dehydrogenases/reductases | 164 |
| Si | 125 |
| Si(111) | 47, 55 |
| silicate perovskite | 190 |
| silicon phthalocyanine dichloride | 88 |
| silver | 109, 191, 192 |
| simultaneous measurement | 150 |
| single crystal X-ray diffraction | 159, 163, 165, 171, 175 |
| SiO2 | 52, 56 |
| site-selective ion desorption | 60 |
| skutterudite | 148 |
| small GTPase | 178 |
| small-angle scattering | 93, 235 |
| smectic | 140, 144 |
| soft X-ray | 201 |
| soft X-ray emission spectroscopy (SXES) | 79, 84, 100, 101 |
| soft X-ray Raman scattering | 100 |
| soil | 18 |
| solid state electrolyte | 103 |
| solvation structure | 11 |
| solvation structureromide | 11 |
| solvent extraction | 22 |
| sorption | 20 |
| speciation | 242 |
| spherical microdomain | 142 |
| spin | 159 |
| spin reorientation transition | 64 |
| spin state | 173 |
| spin tunnel junction | 90 |
| spinel | 165 |
| spinel compound | 134 |
| spontaneous orientation | 143 |
| src SH3 | 206, 207 |
| SrTiO3 | 90 |
| SrVO3 | 95 |
| stannite | 137 |
| Staphylococcus aureus | 231 |
| static mean square displacement | 80 |
| steel | 154 |
| STM | 49 |
| strain | 49, 97, 127 |
| strength | 127 |
| stress | 127 |
| structural transition | 134, 135 |
| structure analysis | 193 |
| structure and function relationship | 161 |
| structure solution | 138 |
| sugar complex | 212 |
| sulfur (S) | 242, 246 |
| superconductivity | 186 |
| superconductor | 86, 148 |
| supercritical fluid | 191, 192 |
| superfamily | 209 |
| support | 48 |
| supported catalyst | 15 |
| supramolecule | 19, 31, 32 |
| surface | 59, 63 |
| surface functionalization | 15 |
| surface ordering | 142 |
| surface reaction | 65 |
| surface structure | 47 |
| surfactant | 33 |
| |
| t-BuONa stabilizer | 122 |
| technetium (Tc) | 9 |
| tetragonal | 168 |
| thallium (Tl) | 59 |
| Thermus flavus | 228 |
| thermus thermophilus | 196 |
| thick filament | 234 |
| thin film | 41, 76, 88, 91, 95, 97, 152 |
| thiospinel | 101 |
| three-dimensional structure | 179 |
| threshold electron | 6 |
| Ti 3d | 83 |
| Ti oxide | 82 |
| time-resolved | 39, 156 |
| time-resolved SANS | 118 |
| time-resolved SAXS | 118 |
| time-resolved spectroscopy | 65 |
| tin (Sn) | 38 |
| TiO2 | 130 |
| TiO2(110) | 62, 74 |
| TiO2/VO2 interface | 96 |
| titanium (Ti) | 121 |
| TOF | 111 |
| total-reflection XAFS | 11 |
| transcriptional regulatory protein | 225 |
| transformation | 185 |
| transition metal 3d bands | 84 |
| transition metal oxide | 95 |
| tri-butylphosphate | 9 |
| tribofilm | 246 |
| trigger factor | 214, 215 |
| trivalent ion | 190 |
| tRNA | 203 |
| tumor | 195 |
| two concentric spherical shell mode | 237 |
| |
| ultraviolet photoemission spectroscopy (UPS) | 49, 70 |
| unstable intermediate | 19 |
| uranium (U) | 9 |
| |
| valence | 151 |
| valence band | 54, 83 |
| valence state | 173 |
| vanadate-doped hydroxyapatite | 128 |
| vanadium (V) | 42, 58 |
| visible light | 121 |
| VUV spectroscopy | 248 |
| |
| water-in-scCO_2 microemulsion | 192 |
| water-in-scCO2 microemulsion | 191 |
| wavelength standard | 247 |
| WAXS | 156 |
| weathering steel | 102, 154 |
| wheat | 229 |
| |
| X-ray absorption | 41, 73 |
| X-ray absorption spectroscopy (XAS) | 26, 82, 89, 90, 97 |
| X-ray anomalous dispersion | 140 |
| X-ray beam condensation | 169 |
| X-ray beam confinement | 169 |
| X-ray camera | 251 |
| X-ray detector | 253 |
| X-ray diffraction | 183, 186, 193 |
| X-ray diffuse scattering | 221 |
| X-ray ellipsometer | 117, 243 |
| X-ray fluorescence holography | 132 |
| X-ray interference fringe | 169 |
| X-ray micro-diffraction | 123 |
| X-ray microscopy | 201, 217 |
| X-ray Raman scattering | 82 |
| X-ray reflectivity (XRR) | 152 |
| X-ray scattering | 133 |
| X-ray solution scattering | 199 |
| X-ray topography | 180 |
| X-ray waveguide | 169 |
| XAFS | 11, 13, 15, 24 |
| XANAM | 73 |
| XANES | 7, 8, 12, 15, 16, 18, 22, 23, 25, 30, 38, 42, 50, 51, 57, 66, 69, 80, 94, 102, 110, 121, 147, 151, 154, 202, 242, 244, 246 |
| Xe | 1 |
| XMCD | 64, 67, 68, 71, 125, 130, 173 |
| XMLD | 243 |
| XPS | 65 |
| XSTRIP | 253 |
| |
| Yoneda wing | 157 |
| yttrium chloride | 43 |
| |
| zeolite | 7, 27 |
| ZEP520 | 111 |
| zirconium oxide | 168 |
| ZnMgO | 147 |
| ZnO | 54, 104 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2005
Copyright © 2006 by High Energy Accelerator Research Organization (KEK)