| Photon Factory Activity Report 2005 Part B: Users' Report Keyword Index | 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page | 
| 2 | |
| 2D SAXS-WAXS-DSC | 106 | 
| 
 | |
| 3-Xylanase | 232 | 
| 3D local structure | 132 | 
| 3d orbital | 42 | 
| 3d transition metal | 104 | 
| 3d-2p X-ray emission spectroscopy | 84 | 
| 
 | |
| 5'-methyladenosine nucleosidase | 219 | 
| 
 | |
| α-aminoadipate aminotransferase | 196 | 
| absolute sensitivity | 248 | 
| absorption edge | 136 | 
| acetic anhydride | 62 | 
| acidity | 48 | 
| adsorption | 4, 65 | 
| adsorption of hydrogen | 39 | 
| aerosol | 61, 191, 192, 242 | 
| AFM | 52 | 
| Ag(DCNQI)2 | 12 | 
| AgBr | 141 | 
| aggregates structural | 237 | 
| air/solution interface | 11, 11 | 
| akaganeite | 102 | 
| Al2O3 | 89 | 
| Al-Li alloy | 77 | 
| albite | 185 | 
| algae | 160 | 
| alkadiyne | 63 | 
| alkaline-earth atom | 3 | 
| alkane crystallization | 106, 114 | 
| amalgam | 202 | 
| AMF | 195 | 
| aminoacyl-tRNA synthetase | 224 | 
| aminoacylation | 224 | 
| amorphous | 107, 108, 119 | 
| amyloidotic disease | 204 | 
| angiogenesis | 239 | 
| Angle Resolved Total Reflection Fluorescence-XAFS | 74 | 
| angle-resolved photoelectron spectroscopy (ARPES) | 49, 54, 59 | 
| anisotropic photopolymerization | 53 | 
| annealing | 45, 46 | 
| anomalous scattering | 173 | 
| anomalous X-ray dispersion | 105 | 
| anomalous X-ray scattering (AXS) | 113 | 
| anticodon | 203 | 
| AOT | 61, 191, 192 | 
| apatite | 58 | 
| aqueous solution | 36 | 
| Arabidopsis thaliana | 219 | 
| arginyl-tRNA synthetase | 203 | 
| arteriogenesis | 239 | 
| articular cartilage | 238 | 
| aspartate kinase | 228 | 
| Aspergillus niger | 218 | 
| asymmetric catalysis | 15 | 
| atomic force | 73 | 
| ATPsynthase | 230 | 
| ATS | 136 | 
| Au | 74 | 
| Auger decay | 1, 5 | 
| Auger spectroscopy | 1 | 
| 
 | |
| β-1 | 232 | 
| β-glucosidase | 229 | 
| β-helix | 218 | 
| Ba ferrite | 174 | 
| band offset | 89 | 
| base oil | 193 | 
| BaTiO3 | 79, 100 | 
| bimetallic | 28 | 
| bimetallic cluster | 38 | 
| biomass | 21 | 
| bismuth (Bi) | 112 | 
| block copolymer | 142, 143, 153 | 
| boron nitride | 26 | 
| Borrmann effect | 169 | 
| broad range substrate specificity | 196 | 
| bromide | 36, 40 | 
| bromination | 146 | 
| bulk modulus | 170 | 
| 
 | |
| C60 fullerene | 85 | 
| calmodulin | 233 | 
| carbon nanotube | 85 | 
| carbonyl reductaze | 164 | 
| carboxylate | 20 | 
| catalyst | 7, 8, 15, 16, 21, 25, 27, 28, 29, 34, 35, 37, 38, 39, 42, 44, 48, 50, 51, 58, 66, 110, 121, 128, 137, 149 | 
| catalyst | 155 | 
| CCD | 250 | 
| Ce | 21 | 
| Ce0.8Zr0.2O2 | 176 | 
| CeO2-TiO2 | 34 | 
| cerebral perfusion | 241 | 
| ceria | 151 | 
| charge ordering | 98, 99 | 
| chelating agent | 16 | 
| chemical bond | 73 | 
| chemical mapping | 73 | 
| chemical potential pinning | 99 | 
| chemical shift | 94 | 
| Chipman's method | 252 | 
| chloride | 102 | 
| chromium (Cr) | 121 | 
| cisplatin | 120 | 
| citric acid | 72 | 
| clathrate | 186 | 
| clip domain | 179 | 
| cluster | 7, 112 | 
| cluster calculation | 84 | 
| cluster model analysis | 104 | 
| CMR | 98 | 
| CO | 66 | 
| co-extraction | 9 | 
| Co-Mo sulfide catalyst | 8, 44 | 
| Co-W sulfide catalyst | 16 | 
| cobalt (Co) | 68, 172 | 
| cobalt citrate | 138 | 
| cobaltite | 173, 177 | 
| codon usage | 203 | 
| coherence | 249 | 
| coincidence | 1, 2, 5, 55 | 
| colicin | 210 | 
| comblike polymer | 245 | 
| combustion | 34 | 
| complex | 17, 40 | 
| Compton scattering | 77 | 
| concerted inhibition | 228 | 
| conductivity | 30 | 
| coordination chemistry | 10 | 
| copper ion | 69 | 
| core excitation | 60 | 
| coronary angiography | 239 | 
| coronary ligation | 239 | 
| corrosion | 154 | 
| Corynebacterium | 228 | 
| counting loss | 252 | 
| counting method | 252 | 
| Cr(III) | 18 | 
| Cr(VI) | 18 | 
| critical angle | 152 | 
| crossbridge | 234 | 
| cruciate ligament | 238 | 
| crystal structure | 160, 161, 162, 163, 164, 203, 211, 212, 213 | 
| crystal truncation rod (CTR) | 56 | 
| crystallin | 220 | 
| crystallization | 107, 108, 153, 230 | 
| CT | 201 | 
| Cu | 54, 62 | 
| CuAlMCM-41 | 69 | 
| CuIr2S4 | 101 | 
| CuMCM-41 | 69 | 
| CuMFI | 57, 69 | 
| CVD method | 7 | 
| CVTF | 246 | 
| cyclopropanation | 15 | 
| cylindrical microdomains | 143 | 
| cytoplasmic domain | 233 | 
| 
 | |
| d-d excitation | 79, 100 | 
| DAC | 188 | 
| DAMMIN | 200, 214 | 
| dead time | 252 | 
| deaminase | 209 | 
| decagonal quasicrystal | 84 | 
| degradation | 111 | 
| dehydration | 184 | 
| dehydroaromatization | 110 | 
| dehydrogenation | 38 | 
| dendrimer | 118 | 
| depth-resolved | 67 | 
| desorption | 111 | 
| detergent | 230 | 
| di-block copolymer | 144, 145 | 
| diacetylene | 53 | 
| dielectrics | 82 | 
| diffraction-enhanced imaging (DEI) | 238, 240, 254 | 
| diluted magnetic semiconductor (DMS) | 78, 104, 130, 132 | 
| direct methanol fuel cell (DMFC) | 28 | 
| disclination | 123 | 
| dissociation | 2 | 
| DNA | 30 | 
| DNA repair | 162 | 
| DNA-binding protein | 197, 198 | 
| dodecyltrimethylammonium bromide | 11 | 
| domain fusion | 209 | 
| dopant | 140 | 
| doped-ceria | 103 | 
| double ionization | 2, 3 | 
| drawing | 156 | 
| DSC | 150 | 
| DXAFS | 35, 39, 192, 253 | 
| 
 | |
| EF-hand protein | 199, 200 | 
| effective charge | 94 | 
| Einstein frequency | 80 | 
| electric structure | 82, 100 | 
| electron correlation | 1, 3 | 
| electron density distribution | 139, 165, 166, 167, 168, 176 | 
| electron excitation | 73 | 
| electronic correlation | 77 | 
| electronic structure | 49, 84 | 
| element specific magnetic hysteresis | 71 | 
| elemental distribution | 202 | 
| elemental mapping | 217 | 
| emulsion | 106, 114 | 
| environment of sea | 23 | 
| enzyme | 205 | 
| enzyme action | 212 | 
| epitaxial strain | 91 | 
| ErCo2 | 135 | 
| Eu anomaly | 244 | 
| europium (Eu) | 244 | 
| EXAFS | 4, 7, 9, 10, 14, 20, 21, 22, 25, 27, 28, 34, 36, 37, 40, 43, 44, 48, 51, 57, 58, 61, 62, 64, 69, 72, 74, 80, 103, 109, 110, 112, 119, 120, 122, 128, 141, 146, 147, 148, 149, 155, 172 | 
| EXAFS | 17 | 
| exfoliative toxin | 161 | 
| extended dead-time model | 252 | 
| 
 | |
| Fe2P | 81 | 
| FexCo1-xSi pseudobinary alloy | 94 | 
| Fe-based binary alloys | 102 | 
| Fe/Co | 71 | 
| feedback inhibition | 228 | 
| ferredoxin | 194 | 
| ferrimagnetic ordering | 134, 135 | 
| ferrolectrics | 100 | 
| FeS | 188 | 
| FeSi | 188 | 
| fiber diffraction | 234, 236 | 
| fiber suspension | 236 | 
| flagellar axonemes | 236 | 
| flavoprotein | 213 | 
| flow alignment | 236 | 
| fluorescence | 2, 42 | 
| fluorescence method | 43 | 
| fluorescent X-ray CT | 241 | 
| fluoride melts | 26 | 
| form factor | 159 | 
| fractal | 87 | 
| friction coefficient | 246 | 
| FTY720 | 237 | 
| fuel cell | 29 | 
| 
 | |
| G6-amylase | 212 | 
| Ga | 50 | 
| GaAs | 180, 249 | 
| gadolinium (Gd) | 159 | 
| GaN | 78 | 
| gate dielectrics | 89 | 
| gate insulator | 45 | 
| Gd | 243 | 
| Ge nano-island | 49 | 
| gene silencing | 226 | 
| geometrical frustration | 116 | 
| germanium (Ge) | 59 | 
| GeSi | 75 | 
| gibbsite | 171 | 
| glutaminyl cyclase | 204 | 
| glycoconjugated bioactive complex | 120 | 
| glycoprotein | 218 | 
| gold (Au) | 47 | 
| gp41 | 233 | 
| grancalcin | 199 | 
| grazing-incidence SAXS (GISAXS) | 75, 157 | 
| grazing-incidence X-ray diffraction (GIXD) | 47, 76 | 
| GTP | 178 | 
| 
 | |
| halophilic archaea | 194 | 
| helical magnetism | 115 | 
| heteropoly acid | 37 | 
| hexamer | 229 | 
| HfO2 | 45, 152 | 
| high mannose | 160 | 
| high pressure | 163, 171, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190 | 
| high-k | 46, 56, 152 | 
| histone modification | 222 | 
| HIV-1 | 233 | 
| HoB4 | 116 | 
| host-guest | 19, 31, 32 | 
| human hair | 216 | 
| human transcription factor NF-ΚB | 197, 198 | 
| humic acid | 18 | 
| hydration | 4, 40 | 
| hydration structure | 36, 61 | 
| hydrodeselenium reaction | 44 | 
| hydrodesulfurization (HDS) | 8, 16, 72 | 
| hydroformylation | 37 | 
| hydrothermal alternation | 184 | 
| hydrothermal deposit | 244 | 
| hydrous melt | 183 | 
| hysteresis | 126 | 
| 
 | |
| i n situ | 155 | 
| I-VII compound | 181 | 
| II-VI compound | 182 | 
| iin-situ XAFS | 149 | 
| iinterface | 96 | 
| ilmenite | 83 | 
| imaging | 201, 217, 238, 239, 240, 241, 251, 254 | 
| immunosuppressant | 237 | 
| in situ | 16, 35, 154, 183 | 
| in-situ observation | 19 | 
| in-situ X-ray diffraction | 158 | 
| in-situ XAFS | 66 | 
| in-vivo imaging | 241 | 
| incommensurate crystal | 86 | 
| inhibitor | 195 | 
| innate immunity | 179 | 
| interface | 90, 125 | 
| interface reaction | 56 | 
| interface state | 70 | 
| interfacial reaction | 46 | 
| interference fringe | 180 | 
| interferometer | 251 | 
| intermediate filament | 216 | 
| ion-implantation | 172 | 
| ionic conducting glass | 141 | 
| ionomer | 129 | 
| IP | 127 | 
| IR | 66 | 
| iridium (Ir) | 38 | 
| iron (Fe) | 40, 125, 126, 131 | 
| iron oxyhydroxide | 20 | 
| iron uptake system | 231 | 
| isopullulanase | 218 | 
| IV-VI compound | 189 | 
| 
 | |
| Jeffery orbits | 236 | 
| 
 | |
| keap1 | 227 | 
| kinetics | 184, 185 | 
| KMSAS | 224 | 
| KTiOPO4 | 166 | 
| kynurenine aminotransferase | 196 | 
| 
 | |
| L-cysteine | 10 | 
| La1-xSrxMnO3 | 91, 97 | 
| LaAlO3 | 89 | 
| LaBi | 187 | 
| lactate oxidase | 211 | 
| lamellar | 33 | 
| lanthanide contraction | 14 | 
| lanthanum niobium titanate | 139 | 
| large cavity | 213 | 
| laser MBE | 91, 97, 99 | 
| lattice defect | 221 | 
| lattice distortion | 180 | 
| Laves phase | 135, 159 | 
| LB | 53 | 
| LB membrane | 145 | 
| LED | 147 | 
| light element | 217 | 
| LiMn2O4 | 165 | 
| linear compressibility | 170 | 
| linear dichroism (LD) | 97 | 
| liquid | 181, 182, 189 | 
| liquid crystal | 123, 140, 144 | 
| liquid-helium cryostat | 117 | 
| local structure | 103, 113, 141, 172 | 
| lower mantle | 190 | 
| LSM | 250 | 
| lung cancer | 227, 240 | 
| lysine biosynthesis | 196 | 
| lysozyme | 208 | 
| 
 | |
| μGISAXS | 157 | 
| macromonomer | 245 | 
| MAD | 226, 232 | 
| magma | 183 | 
| magnesium vanadate | 128 | 
| magnetic anisotropy | 67, 68 | 
| magnetic Compton profile | 92, 131 | 
| magnetic ordering | 174 | 
| magnetic thin film | 67 | 
| magnetism | 159 | 
| magnetite | 136 | 
| magnetization | 126 | 
| magnetoelectric effect | 115 | 
| magnetoelectrics | 124 | 
| magnetoresistance | 124 | 
| magnetostriction | 115, 126 | 
| mammalian cell | 201, 217 | 
| manganite | 90, 98 | 
| maximum-entropy method | 167 | 
| MCM-41 | 38, 69 | 
| mechanical alloying | 119 | 
| mechanism | 185 | 
| melt structure | 183 | 
| meniscus | 238 | 
| mercury(II) (Hg) | 10 | 
| mesoporous | 20 | 
| mesoporous ethylenesilica | 146 | 
| mesoporous silica | 37, 158 | 
| metal colloid | 191, 192 | 
| metal nanoparticle | 118 | 
| metal-insulator transition | 80, 96 | 
| metal-molecule interface | 70 | 
| metallic glass | 113 | 
| metalloporphyrin | 17 | 
| metastasis | 195 | 
| methane coupling | 50 | 
| methyl-CpG-binding protein | 226 | 
| MgNi alloy | 119 | 
| micelle | 36 | 
| microbeam | 123 | 
| microbeam SAXS | 114, 157, 216 | 
| microemulsion | 109 | 
| microporous | 20 | 
| microstructure | 76 | 
| MIGS | 63 | 
| mineral | 244 | 
| Mo K-edge XAFS | 110 | 
| Mo/Al2O3 | 25 | 
| Mo/SiO2 | 25 | 
| modified single crystal metal oxide surface | 62 | 
| molecular imaging | 241 | 
| molecular orientation | 52 | 
| molten globule | 206 | 
| molten salt | 13, 14, 43 | 
| molten salts | 24 | 
| molybdenum carbide | 110 | 
| momentum density | 77 | 
| monocrystalline | 76 | 
| monovalent copper ion | 57 | 
| morphology | 129 | 
| morphology formation | 107, 108 | 
| motor protein | 235 | 
| Mott insulator | 96 | 
| mouse brain | 241 | 
| MRG15 | 222 | 
| mTOR | 178 | 
| muitiply excited molecule | 2 | 
| multi-extreme environments | 81 | 
| multilayer | 125, 131, 145 | 
| multivalent fluoride | 14 | 
| muscle contraction | 234 | 
| myosin | 234, 235 | 
| 
 | |
| N2 | 2 | 
| N2 adsorption | 57 | 
| Nafion | 105 | 
| nano-cylinder | 144 | 
| nano-island | 49 | 
| nanocarbon | 4 | 
| nanoparticle | 28, 79, 93, 109, 118, 122, 151, 168 | 
| nanosolution | 61 | 
| nanospace | 4 | 
| NbN catalyst | 149 | 
| NC-AFM | 73 | 
| Ne | 5 | 
| nematic | 123 | 
| new furnace | 167 | 
| new lectin family | 160 | 
| NEXAFS | 52, 53, 63, 88 | 
| Ni | 21, 67 | 
| Ni colloid | 122 | 
| Ni nano-particle | 122 | 
| nickel (Ni) | 22 | 
| nickel oxide | 155 | 
| NiCr2O4 | 134 | 
| NiMo | 72 | 
| nitride | 7 | 
| nitriding process | 149 | 
| nitrogen | 2 | 
| NO | 65 | 
| NO adsorption | 8 | 
| non-Newtonian polymer | 236 | 
| nonlinear effect | 249 | 
| nonlinear optical crystal | 166 | 
| norbergite | 163 | 
| Nrf2 | 227 | 
| nuclear forward scattering (NFS) | 81, 93 | 
| nuclear fuel cycle | 13 | 
| nuclear resonant scattering | 93, 247 | 
| nucleotide synthesis | 223 | 
| 
 | |
| O2 | 6 | 
| octyltrimethylammonium bromide | 36 | 
| olymer blend | 108 | 
| one-dimension | 59 | 
| oral mucosa | 202 | 
| orbital ordering | 87, 92, 133 | 
| ordered domain | 76 | 
| organic semiconductor | 70 | 
| organic superconductor | 86 | 
| orientation | 88 | 
| osmium (Os) | 51 | 
| osteoporosis | 204 | 
| oxidation damage | 162 | 
| oxidation-reduction state | 23 | 
| oxide | 130 | 
| 
 | |
| p65/L-plastin | 200 | 
| partitioning | 190 | 
| Pd-Pt | 66 | 
| PDA | 253 | 
| peapod | 85 | 
| pentacene ultrathin film | 52 | 
| peptide | 32 | 
| periodic mesoporous organosilica (PMO) | 146 | 
| perovskite | 115, 177, 190 | 
| peroxoniobic acid | 149 | 
| perpendicular orientation | 143 | 
| phase G | 170 | 
| phase separation | 107, 108 | 
| phase transition | 124, 177, 187, 188 | 
| phase-contrast | 251 | 
| phenol | 35 | 
| photocatalyst | 50, 121, 137 | 
| photoelectron photoion coincidence spectroscopy | 55 | 
| photoemission spectroscopy (PES) | 45, 46, 59, 78, 83, 85, 89, 90, 91, 95, 96, 98, 99, 104 | 
| photoionization | 3, 5 | 
| photoluminescence | 25 | 
| photon-stimulated ion desorption (PSID) | 55, 60, 111 | 
| photopolymerization | 63 | 
| photosensitivity | 12 | 
| plagioclase | 185 | 
| plant | 219 | 
| platinum (Pt) | 120 | 
| polarimeter | 250 | 
| polarization dependence | 88 | 
| poly(caprolactone) | 153 | 
| poly-Si | 46 | 
| polybutadiene | 153 | 
| polyethylene | 129 | 
| polymer blend | 107 | 
| polyoxometalate | 175 | 
| polypropylene | 156 | 
| positional disorder | 137 | 
| post-collision interaction (PCI) | 1, 6 | 
| posttranslational modification | 204 | 
| powder diffraction | 134, 135, 167, 176, 177 | 
| Pr1-xCaxMnO3 thin film | 99 | 
| precursor | 138 | 
| preferential CO oxidation | 29 | 
| pressure effect | 133 | 
| probe molecule | 8 | 
| projection microscopy | 201 | 
| propane conversion | 128 | 
| protein | 205 | 
| protein crystal | 221 | 
| protein crystallography | 160, 161, 162, 164, 178, 179, 195, 196, 203, 204, 209, 210, 211, 212, 213, 218, 219, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232 | 
| protein folding | 206, 207, 208 | 
| protein-DNA complex | 226 | 
| PROX | 25 | 
| PRPP | 223 | 
| Pt | 29 | 
| Pt perpendicular anisotropy | 131 | 
| PTRF-XAFS | 62 | 
| pyrochemical process | 24 | 
| pyrochemical reprocessing | 43 | 
| pyroglutamate | 204 | 
| 
 | |
| quadrupole ordering | 124 | 
| quadrupole transition | 136 | 
| quantitative analysis | 41 | 
| quantum dot | 75 | 
| quaternary structure | 205 | 
| 
 | |
| rail | 127 | 
| rare earth fluorides | 24 | 
| Re | 35 | 
| re-processing | 9 | 
| recognition | 31, 32 | 
| reconstruction | 201 | 
| reductase | 209 | 
| reduction | 18 | 
| reduction behavior | 69 | 
| reflectivity | 145 | 
| reforming | 48 | 
| refractive angle | 254 | 
| residual order | 56 | 
| resist | 111 | 
| resonant Auger spectroscopy | 30 | 
| resonant diffraction | 137 | 
| resonant photoemission | 83, 104 | 
| resonant Raman scattering | 6 | 
| resonant X-ray magnetic scattering (RXMS) | 174 | 
| resonant X-ray scattering | 136, 180 | 
| resonant X-ray scattering (RXS) | 87, 116 | 
| reverse micelle | 61, 109 | 
| Rh | 37 | 
| rheology | 33 | 
| rhodium catalyst | 37 | 
| Rietveld analysis | 167, 168 | 
| rodlike molecule | 245 | 
| Rossmann fold | 224 | 
| rust | 102, 154 | 
| RVO3 | 133 | 
| 
 | |
| satellite | 5 | 
| SAXS | 33, 75, 105, 107, 108, 114, 118, 129, 142, 143, 144, 145, 150, 153, 156, 157, 191, 194, 197, 198, 200, 205, 206, 207, 208, 214, 215, 216, 220, 233, 237, 245 | 
| second harmonic generation | 249 | 
| sediment | 23 | 
| selection | 42 | 
| selective oxidation | 121 | 
| selective oxidation of CO in H2 | 25 | 
| selenium (Se) | 202 | 
| selenophene | 44 | 
| self-assembled monolayer (SAM) | 60 | 
| self-assembly | 19, 31, 32 | 
| self-assembly process | 158 | 
| semiconductor | 112, 147 | 
| sequential | 156 | 
| serpentine | 184 | 
| shear | 33 | 
| short-chain dehydrogenases/reductases | 164 | 
| Si | 125 | 
| Si(111) | 47, 55 | 
| silicate perovskite | 190 | 
| silicon phthalocyanine dichloride | 88 | 
| silver | 109, 191, 192 | 
| simultaneous measurement | 150 | 
| single crystal X-ray diffraction | 159, 163, 165, 171, 175 | 
| SiO2 | 52, 56 | 
| site-selective ion desorption | 60 | 
| skutterudite | 148 | 
| small GTPase | 178 | 
| small-angle scattering | 93, 235 | 
| smectic | 140, 144 | 
| soft X-ray | 201 | 
| soft X-ray emission spectroscopy (SXES) | 79, 84, 100, 101 | 
| soft X-ray Raman scattering | 100 | 
| soil | 18 | 
| solid state electrolyte | 103 | 
| solvation structure | 11 | 
| solvation structureromide | 11 | 
| solvent extraction | 22 | 
| sorption | 20 | 
| speciation | 242 | 
| spherical microdomain | 142 | 
| spin | 159 | 
| spin reorientation transition | 64 | 
| spin state | 173 | 
| spin tunnel junction | 90 | 
| spinel | 165 | 
| spinel compound | 134 | 
| spontaneous orientation | 143 | 
| src SH3 | 206, 207 | 
| SrTiO3 | 90 | 
| SrVO3 | 95 | 
| stannite | 137 | 
| Staphylococcus aureus | 231 | 
| static mean square displacement | 80 | 
| steel | 154 | 
| STM | 49 | 
| strain | 49, 97, 127 | 
| strength | 127 | 
| stress | 127 | 
| structural transition | 134, 135 | 
| structure analysis | 193 | 
| structure and function relationship | 161 | 
| structure solution | 138 | 
| sugar complex | 212 | 
| sulfur (S) | 242, 246 | 
| superconductivity | 186 | 
| superconductor | 86, 148 | 
| supercritical fluid | 191, 192 | 
| superfamily | 209 | 
| support | 48 | 
| supported catalyst | 15 | 
| supramolecule | 19, 31, 32 | 
| surface | 59, 63 | 
| surface functionalization | 15 | 
| surface ordering | 142 | 
| surface reaction | 65 | 
| surface structure | 47 | 
| surfactant | 33 | 
| 
 | |
| t-BuONa stabilizer | 122 | 
| technetium (Tc) | 9 | 
| tetragonal | 168 | 
| thallium (Tl) | 59 | 
| Thermus flavus | 228 | 
| thermus thermophilus | 196 | 
| thick filament | 234 | 
| thin film | 41, 76, 88, 91, 95, 97, 152 | 
| thiospinel | 101 | 
| three-dimensional structure | 179 | 
| threshold electron | 6 | 
| Ti 3d | 83 | 
| Ti oxide | 82 | 
| time-resolved | 39, 156 | 
| time-resolved SANS | 118 | 
| time-resolved SAXS | 118 | 
| time-resolved spectroscopy | 65 | 
| tin (Sn) | 38 | 
| TiO2 | 130 | 
| TiO2(110) | 62, 74 | 
| TiO2/VO2 interface | 96 | 
| titanium (Ti) | 121 | 
| TOF | 111 | 
| total-reflection XAFS | 11 | 
| transcriptional regulatory protein | 225 | 
| transformation | 185 | 
| transition metal 3d bands | 84 | 
| transition metal oxide | 95 | 
| tri-butylphosphate | 9 | 
| tribofilm | 246 | 
| trigger factor | 214, 215 | 
| trivalent ion | 190 | 
| tRNA | 203 | 
| tumor | 195 | 
| two concentric spherical shell mode | 237 | 
| 
 | |
| ultraviolet photoemission spectroscopy (UPS) | 49, 70 | 
| unstable intermediate | 19 | 
| uranium (U) | 9 | 
| 
 | |
| valence | 151 | 
| valence band | 54, 83 | 
| valence state | 173 | 
| vanadate-doped hydroxyapatite | 128 | 
| vanadium (V) | 42, 58 | 
| visible light | 121 | 
| VUV spectroscopy | 248 | 
| 
 | |
| water-in-scCO_2 microemulsion | 192 | 
| water-in-scCO2 microemulsion | 191 | 
| wavelength standard | 247 | 
| WAXS | 156 | 
| weathering steel | 102, 154 | 
| wheat | 229 | 
| 
 | |
| X-ray absorption | 41, 73 | 
| X-ray absorption spectroscopy (XAS) | 26, 82, 89, 90, 97 | 
| X-ray anomalous dispersion | 140 | 
| X-ray beam condensation | 169 | 
| X-ray beam confinement | 169 | 
| X-ray camera | 251 | 
| X-ray detector | 253 | 
| X-ray diffraction | 183, 186, 193 | 
| X-ray diffuse scattering | 221 | 
| X-ray ellipsometer | 117, 243 | 
| X-ray fluorescence holography | 132 | 
| X-ray interference fringe | 169 | 
| X-ray micro-diffraction | 123 | 
| X-ray microscopy | 201, 217 | 
| X-ray Raman scattering | 82 | 
| X-ray reflectivity (XRR) | 152 | 
| X-ray scattering | 133 | 
| X-ray solution scattering | 199 | 
| X-ray topography | 180 | 
| X-ray waveguide | 169 | 
| XAFS | 11, 13, 15, 24 | 
| XANAM | 73 | 
| XANES | 7, 8, 12, 15, 16, 18, 22, 23, 25, 30, 38, 42, 50, 51, 57, 66, 69, 80, 94, 102, 110, 121, 147, 151, 154, 202, 242, 244, 246 | 
| Xe | 1 | 
| XMCD | 64, 67, 68, 71, 125, 130, 173 | 
| XMLD | 243 | 
| XPS | 65 | 
| XSTRIP | 253 | 
| 
 | |
| Yoneda wing | 157 | 
| yttrium chloride | 43 | 
| 
 | |
| zeolite | 7, 27 | 
| ZEP520 | 111 | 
| zirconium oxide | 168 | 
| ZnMgO | 147 | 
| ZnO | 54, 104 | 
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2005
Copyright © 2006 by High Energy Accelerator Research Organization (KEK)