|
Photon Factory Activity Report 2006 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
2 | |
| II-VI semiconductor | 278 |
| |
| 3d level | 70 |
| 3d transition metal | 90 |
| |
| IV-VI compound | 205 |
| 4H-SiC | 56 |
| |
| A45G | 219 |
| absorption | 50 |
| acylaminocarboxylates | 152 |
| adsorption | 40, 67 |
| Ag | 48, 151 |
| Ag(DMeDCNQI)2 | 21 |
| aggregation | 227, 259 |
| Al2O3 | 112 |
| alkali metal | 96 |
| alkene epoxidation | 14 |
| alloy | 16, 92 |
| aluminous phase | 212 |
| aluminum(Al) | 206 |
| Alzheimer's disease proteins | 237 |
| amorphization | 197 |
| amorphous | 92, 180 |
| amyloid | 240 |
| amylose-tricarbanilate | 18 |
| angiogenesis | 264 |
| angle resolved photoemission spectroscopy(ARPES) | 42, 52, 54, 55, 71, 75, 76, 77, 85, 86, 87, 88, 89, 96 |
| Angle resolved total reflection | 279 |
| anisotropy | 80 |
| annealing | 162 |
| antibody engineering | 248 |
| antiferromagnetism | 176 |
| apaite-type compound | 185 |
| archaea | 222 |
| area density | 50 |
| array | 282 |
| arsenic concentrated clay | 146 |
| arsenic(As) | 269 |
| arteriogenesis | 264 |
| aspartate kinase | 233 |
| atigue | 174 |
| atmosphere controlled annealing | 44 |
| ATP synthase | 236 |
| Au | 63, 66, 279 |
| Au(111) | 39, 67 |
| Auger | 2 |
| Auger electron spectroscopy | 271 |
| Auger photoelectron coincidence spectroscopy (APECS) | 271 |
| Auger stimulated ion desorption (ASID) mechanism | 272 |
| autoinhibition | 231 |
| autoionization | 2 |
| |
| β-glucosidase | 223 |
| B-C-N hybrid | 99 |
| bacterial transcription factor | 257 |
| band bending | 46 |
| band offset | 41 |
| barrier function of stratum corneum | 246 |
| BaTiO3 | 68 |
| Bi1-xSrxMnO3 | 154 |
| biomedical imaging | 263 |
| block copolymer | 127, 128, 130, 138, 163 |
| blur elimination | 256 |
| borazine | 99 |
| boron doped diamond | 83 |
| Bragg case | 194 |
| Bragg-(Bragg)m-Laue | 195 |
| Bragg-Laue | 195 |
| brushes | 137 |
| butanol synthesis | 15 |
| |
| C70 fullerene | 95 |
| calcium-binding protein | 235 |
| calmodulin | 237 |
| carbohydrate-active enzymes | 251 |
| carbon nanotube | 95, 148 |
| carboplatin | 32 |
| catalyst | 9, 10, 12, 13, 14, 15, 16, 20, 25, 26, 36, 38, 58, 59, 64, 66, 106, 108, 109, 110, 111, 112, 120, 133, 135, 149, 173, 186 |
| catalytic activity | 224 |
| catalytic mechanism | 258 |
| CaTiO3 | 119, 145 |
| CCD | 273, 285 |
| cell | 256 |
| cell cycle checkpoint | 254 |
| cellulose-tricarbanilate | 18 |
| CeO2-ZrO2 solid solution | 184 |
| cerium(Ce) | 268 |
| CF-phase | 212 |
| charge order | 113, 154 |
| charge ordering | 141 |
| charge- and orbital- order | 139 |
| chemical pressure | 88 |
| chemical state | 27, 42, 51 |
| chemical-state mappings | 62 |
| chromitite | 201 |
| cisplatin | 32 |
| CO adsorption | 40 |
| coaxially symmetric mirror analyzer (ASMA) | 271 |
| cobalt citrate complex | 121 |
| cobalt(Co) | 30 |
| coincidence technique | 1 |
| cold collision | 284 |
| colloidal Ni | 106 |
| colossal magnetoresistance | 139 |
| comblike polymer | 137 |
| comet | 181 |
| CoMo | 38 |
| complex | 259 |
| composite | 148 |
| composition | 101 |
| compted tomography(CT) | 256, 263, 273, 286 |
| Compton scattering | 78, 92, 97, 115 |
| concerted inhibition | 233 |
| condensed ammonia | 272 |
| conformation | 142, 220 |
| copper ions | 59 |
| copper(Cu) | 52, 54, 177 |
| core structural model | 37 |
| corrosion | 29, 172 |
| Corynebacterium glutamicum | 233 |
| cosmic dust | 181 |
| counting loss | 276 |
| covalent bonding | 186, 187 |
| craze | 148 |
| critical exponent | 122 |
| crystal growth | 200 |
| crystal quality | 228 |
| crystal structure | 5, 22, 179, 186, 192, 199, 216, 249 |
| crystal structure analysis | 257 |
| crystal X-ray wave guide | 195 |
| crystallin | 227 |
| crystalline block copolymer | 101 |
| crystalline-crystalline diblock copolymer | 100 |
| crystallization | 44, 101, 132, 142, 144, 236 |
| crystallization kinetics | 197 |
| crystallographic analysis | 232 |
| Cu supported on HZSM-5 | 26 |
| CuMFI | 59 |
| cuprate | 86 |
| cyclodextrin | 250 |
| cylinder | 128 |
| cylindrically averaged difference Patterson function | 242 |
| |
| D-aldohexose dehydrogenase | 252 |
| D-glucose dehydrogenase | 252 |
| D-mannose | 252 |
| dark-field | 262 |
| dead layer | 74 |
| dead time | 276 |
| deaminase | 258 |
| defect | 267 |
| deformation | 105 |
| dehydrated | 136 |
| dehydration | 211 |
| dehydrogenation | 16 |
| Deinococcus radiodurans | 224 |
| density | 50, 102 |
| density of states | 56 |
| detector | 276, 280, 282, 283 |
| diamond anvil cell( DAC) | 180, 212 |
| diffraction | 174, 195, 262 |
| diffuse scattering | 228 |
| diffusion | 62 |
| dilute oxide magnetic semiconductor | 114 |
| diluted magnetic semiconductor | 90 |
| disorder | 86, 175 |
| dispersive XAFS(DXAFS) | 12, 13, 29, 59, 280, 281 |
| disproportionation reaction | 59 |
| DMFC | 10 |
| DMS | 91, 134 |
| DNA binding | 231 |
| DNA binding protein | 217, 247 |
| DNA damage | 254 |
| DNA repair | 254 |
| DNA-complex | 257 |
| domain structure | 153 |
| doping | 114 |
| double photoionization | 1 |
| double-crystal | 281 |
| double-pass cylindrical mirror analyzer (DPCMA) | 271 |
| drug design | 216 |
| drug discovery | 261 |
| drug-complex | 257 |
| DWARF1 | 238 |
| DyB4 | 103 |
| dye | 5 |
| |
| Earth science | 145, 210, 211 |
| edge jump | 17 |
| EF-hand | 235 |
| effect of Ti addition | 26 |
| electrical conductivity | 46 |
| electrocatalysis | 12 |
| electron density | 156, 186, 187 |
| electron density profile | 163, 239 |
| electron-doped cuprate | 88 |
| electronic states | 96 |
| electronic structure | 55, 69 |
| electrostatic interaction | 215, 221 |
| electrum | 265 |
| elemental and chemical analysis | 49 |
| enzyme | 249 |
| epitaxial layers | 104 |
| epoxidation | 66 |
| EQCM | 39 |
| equation of state | 201 |
| erythropoietin | 264 |
| Ets1 | 231 |
| europium(Eu) | 152 |
| EUV | 116 |
| evaporation | 107 |
| EXAFS | 3, 4, 6, 7, 9, 10, 14, 15, 16, 21, 22, 23, 24, 28, 32, 33, 34, 35, 37, 38, 58, 63, 64, 106, 109, 111, 112, 129, 131, 133, 135, 146, 149, 152, 157, 164, 168, 169, 170, 171, 172 |
| extreme UV lithography | 170 |
| extremely asymmetric X-ray diffraction | 48 |
| |
| Fe | 56, 115 |
| Fe/Si multilayer | 45 |
| feedback inhibition | 233 |
| FeO | 203 |
| ferric iron | 206 |
| ferrite | 182 |
| ferroelectric | 158, 176 |
| ferromagnetic oxide | 72 |
| ferromagnets | 82, 274 |
| ferromanganese oxides | 268 |
| FeS | 202 |
| FET | 57 |
| fiber | 105 |
| fiber diffraction | 244 |
| first-principles calculation | 134 |
| fluorescence | 2 |
| fluorescence spectroscopy | 20, 56 |
| fluorescent X-ray imaging | 263 |
| fluorides | 104 |
| fluorous phase | 31 |
| fly ash | 19 |
| fmagnetic diffraction | 174 |
| fracture | 105, 148 |
| friction | 48 |
| fuel cell | 12 |
| fullerene | 95, 147 |
| function | 230 |
| functional imaging | 263 |
| fungi | 223 |
| Fyn SH3 | 218 |
| |
| GaAs | 91, 193 |
| ganglioside | 240 |
| gas barrier polymer | 132 |
| gate dielectrics | 8 |
| gate insulators | 42 |
| GdAl2 | 98 |
| GdNi alloy | 92 |
| gel | 136 |
| germanium(Ge) | 46, 195 |
| glycoside hydrolase family 1 | 223 |
| glycosphingolipid | 240 |
| gold(Au) | 47, 53 |
| grain growth | 214 |
| graphite | 96, 99, 107 |
| gyroid | 138 |
| |
| hafnium oxide | 50 |
| hair | 266 |
| hard X-ray polarimeter | 287 |
| HCl | 4 |
| HCV | 261 |
| HDA | 36 |
| He diacharge lamp | 270 |
| heavy element | 51 |
| heavy metals | 19 |
| heme | 94 |
| heme oxygenase | 230 |
| hemin binding protein | 226 |
| Hepatitis C virus | 261 |
| hexagonal filament array | 242 |
| HfO2 | 44 |
| high pressure | 180, 198, 199, 200, 202, 203, 204, 205, 206, 207, 208, 209, 214 |
| high pressure and high temperature | 210 |
| high pressure hydrous phase | 211 |
| high pressure oxidation | 61 |
| high strength steel | 171 |
| high temperature | 184 |
| high-k | 8 |
| high-k gate dielectrics | 41 |
| high-pressure phase transition | 196 |
| high-speed | 273 |
| high-Tc | 89 |
| Hishikari | 265 |
| homoisocitrate dehydrogenase | 225 |
| hot spot | 149 |
| humanization | 248 |
| hydrated solid phase | 143 |
| hydration process | 59 |
| hydrodesulfurization(HDS) | 28, 38 |
| hydroformylation | 15 |
| hydrogen bond | 156 |
| hydrogen storage | 133 |
| hydrogen(H) | 30 |
| hydrous phase | 207 |
| HZSM-5 | 13 |
| |
| IC stepper | 168 |
| ice | 214 |
| imaginary part | 193 |
| imaging | 155, 256, 262, 263, 264, 273, 275, 277, 278, 286 |
| immune T-cell | 253 |
| impurity effect | 157 |
| in situ | 39, 43, 74, 75, 76, 77, 81, 198, 200, 207, 212, 214 |
| in situ XAFS | 28, 36, 66, 72, 135, 173 |
| in-depth profile | 42 |
| in-plane anisotropy | 150 |
| in-situ IR | 36 |
| inhibition | 19 |
| inhomgeneity | 136 |
| inorganic pharmaceuticals | 32 |
| instrumentation | 20, 30, 155, 256, 260, 262, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288 |
| interaction | 248 |
| interface | 29, 45, 47, 56, 61, 91, 115, 160 |
| interference fringe | 193, 194 |
| interferometer | 273 |
| intermediate | 230 |
| ion beam deposition | 99 |
| ion-exchange resin | 3 |
| ionic conduction | 185 |
| ionic conductor | 123 |
| iridium(Ir) | 16 |
| iron oxide | 164 |
| iron(Fe) | 29, 207 |
| isothermal bulk modulus | 201 |
| |
| K3H(SeO4)2 | 156 |
| kinetics | 214 |
| Kushikino | 265 |
| |
| L-cysteine | 47 |
| L-menthol | 246 |
| La1-xSrxMnO3 | 81 |
| La1-xSrxMnO3 thin films | 75, 76 |
| (La,Ba)CoO3 | 118 |
| LaAlO3 | 8, 43 |
| lamellar | 11, 101, 110, 127, 142, 144 |
| LaMnO3 | 117, 166 |
| lanthanum fluoride | 35 |
| laser MBE | 77, 81 |
| lattice defect | 228 |
| lattice modulation | 176 |
| lattice strain | 61 |
| lead(Pb) | 19 |
| lectin | 255 |
| ligament | 262 |
| linear dichroism | 81 |
| lipid bilayer | 239 |
| lipid lamellar structure | 246 |
| liquid | 204, 205, 209 |
| liquid crystal | 130, 159 |
| liquid-crystalline gel | 97 |
| liquid-crystalline gel(DNA) | 97 |
| lithium oxide | 35 |
| lithography | 116 |
| local atomic structure | 278 |
| local structure | 145 |
| LSI | 116 |
| luminescence | 165 |
| lysozyme | 155 |
| |
| Mössbauer holography | 275 |
| macromonomer | 137 |
| magma generation | 210 |
| magnesium vanadates | 108 |
| magnetic Compton scattering | 78, 92, 115 |
| magnetic diffraction | 82, 93, 98, 174 |
| magnetic field | 128 |
| magnetic helix | 182 |
| magnetic moment | 45 |
| magnetic size effect | 117 |
| magnetic thin film | 40, 60 |
| magnetic-field effect | 178 |
| magnetism | 22 |
| magnetroresistance | 147 |
| malaria | 216 |
| malate dehydrogenase | 224 |
| mammalian cell | 260 |
| manganese(Mn) | 9, 91, 177 |
| manganite | 139, 140 |
| maximum entropy method(MEM) | 156, 177, 185, 187 |
| mechanochemical | 19 |
| melt strucuture | 210 |
| melting | 144 |
| melting behavior | 100 |
| membrane protein | 236 |
| memory application | 158 |
| mesopore | 15 |
| meta-stable structure | 138 |
| metabolic enzyme | 222 |
| metal complex | 152, 159 |
| metal particles | 109, 125, 129 |
| metal-insulator transition(MIT) | 70, 113, 140 |
| metal-liquid interface | 29 |
| metal-molecular interface | 47 |
| metallic behavior | 73 |
| MgGeO3 | 213 |
| micro-scale x-ray photoelectron spectroscopy | 65 |
| micro-XRF-XANES | 269 |
| microbeam | 254 |
| microbeam 2D WAXS | 160 |
| microbeam SAXS | 266 |
| microglia | 235 |
| microorganism | 51 |
| microphase separation | 127, 128, 130 |
| microscope | 256, 260, 286 |
| miniature cylindrical mirror analyzer (CMA) | 272 |
| mixed oxide fuels | 24, 34 |
| molecular device | 94 |
| molecular imaging | 263 |
| molecular orientation | 57 |
| molten globule | 219 |
| molten salt | 7, 24, 33, 34, 35 |
| molybdenum(Mo) | 4, 15 |
| monochromatic X-ray | 155 |
| Monte-Carlo method | 121 |
| MoO3 | 80 |
| MORB | 212 |
| motor protein | 245 |
| multidrug resistance | 257 |
| multiferroic | 139, 167, 176 |
| multilayer | 115, 116, 270, 285 |
| multiply excited molecules | 2 |
| muscle | 244 |
| muscle contraction | 241 |
| muscle thin filament | 241 |
| mutant calmodulin | 215, 221 |
| myocardial infarction | 264 |
| |
| NAL-phase | 212 |
| nano phase | 31 |
| nano second | 280 |
| nanoball | 31 |
| nanoconposite | 126 |
| nanocrystal | 117 |
| nanocrystalline | 133 |
| nanodot | 46 |
| nanoparticle | 68, 79, 131, 164 |
| nanostructure | 126 |
| Nas6 | 192 |
| natural arsenic minerals | 146 |
| Nb | 282 |
| Nb carbide | 135 |
| Nb sol | 135 |
| NC-AFM | 49 |
| Nd0.6Sr0.4MnO3 | 77 |
| NdBi | 199 |
| NDSB | 259 |
| new compound | 175 |
| NEXAFS | 47, 57, 62, 67, 107, 150, 151 |
| Ni complex | 37 |
| Ni moment | 92 |
| Ni2P | 28 |
| Ni-MCM-41 | 58 |
| nickel(Ni) | 149 |
| [NiFe] hydrogenase | 37 |
| NIPA/SA | 136 |
| nitride | 22, 161 |
| non-linear optical material | 124 |
| NS5B | 261 |
| nuclear engineering | 33 |
| nuclear resonant scattering | 79, 275 |
| |
| Ohkuchi | 265 |
| OLED | 94 |
| oligomer | 255 |
| optical fiber | 169 |
| optical non-linearity | 169 |
| optical property | 22 |
| orbital magnetic form factor | 93 |
| orbital order | 78, 82, 140, 154 |
| orbital ordering | 84, 157, 166, 178 |
| orbital states | 81 |
| organic semiconductor | 151 |
| organic thin film | 150 |
| orientation of myosin crossbridge | 243 |
| oxidation | 108 |
| oxidation state | 268, 269 |
| oxidative steam reforming of methane | 149 |
| oxide cluster | 177 |
| oxyfluoride | 167 |
| oxynitride | 22 |
| |
| palladium(Pd) | 31, 109, 133, 149 |
| partial cross section | 1 |
| PAS factor | 229 |
| Pd-Pt | 36 |
| Pd/Te | 64 |
| peapod | 95 |
| PEEM | 62, 161, 162 |
| pelagic sediments | 27 |
| Pendellösung fringe | 193 |
| peptide ligand | 37 |
| perovskite | 118, 119, 145, 167, 206 |
| perpendicular magnetic anisotropy | 115 |
| Phanerochaete chrysosporium | 223 |
| phase bahavior | 163 |
| phase contrast | 273, 286 |
| phase G(D) | 179 |
| phase imaging | 277 |
| phase relation | 119 |
| phase transition | 84, 103, 124, 153, 154, 175, 184, 196, 197, 198, 199, 202, 203, 206 |
| phasetransition | 175 |
| phenol synthesis | 13, 26 |
| phosphorolysis | 251 |
| photo-assisted deposition | 110 |
| photocatalyst | 25, 120, 186 |
| photodissociation | 2 |
| photoemission spectroscopy(PES) | 8, 41, 43, 44, 46, 52, 65, 71, 73, 74, 75, 85, 88, 89, 90, 91, 95 |
| photoinduced conductivity change | 21 |
| phthalocyanine | 107, 162 |
| plagioclase | 197, 198 |
| plant calmodulin | 238 |
| platinum(Pt) | 109, 112, 115 |
| platinumz | 112 |
| Poisson distribution | 276 |
| polarimeter | 287 |
| polarization | 107, 285, 287 |
| polarization-dependent total reflection | 63 |
| polarizer | 270 |
| poly(ethylene terephthalate) | 105, 142, 148 |
| poly(methy methacrylate) | 126 |
| polyamorphism | 208 |
| polyimide | 151 |
| polymer blend | 144 |
| polyoxometalate | 183 |
| polypeptide | 220 |
| polypropylene | 126, 160 |
| polythiophene | 150 |
| porphyrin | 94 |
| Porphyromonas gingivalis | 226 |
| portlandite | 180 |
| post-perovskite | 206, 213 |
| potassium(K) | 112 |
| powder X-ray diffraction | 5, 121, 123, 124, 184, 185, 186, 187 |
| Pr0.6Ca0.4MnO3 | 77 |
| precipitation | 171 |
| preferential CO oxidation | 112 |
| preferred crystal orientation | 158 |
| preferred orientation | 213 |
| premodified surface method | 63 |
| pressure effect | 84 |
| pressurre | 179 |
| processive motor | 245 |
| projection | 256 |
| propylene oxide | 66 |
| proteasome | 192 |
| protein | 155, 249, 259 |
| protein crystal growth | 228 |
| protein crystallography | 188, 189, 190, 191, 192, 216, 222, 223, 224, 225, 226, 229, 231, 232, 233, 234, 235, 236, 248, 249, 250, 251, 252, 253, 257, 258, 261 |
| protein degradation | 192 |
| protein folding | 218 |
| protein-DNA complex | 232, 253 |
| proton transfer | 65 |
| protonic conductor | 156 |
| PRPP | 188, 189, 190, 191 |
| Pseudomonas stutzeri | 234 |
| Pt catalyst | 12 |
| Pt metal | 110 |
| PtRu | 10 |
| pullulan-tricarbanilate | 18 |
| pyrochemical process | 7, 35 |
| pyrochemical reprocessing | 24, 34 |
| pyrometallurgic process | 33 |
| |
| quantitative analysis | 17, 50 |
| quick XAFS | 28 |
| |
| rare earth silicate | 185 |
| rare sugars | 234 |
| rare-earth silicide | 55 |
| Re catalyst | 13 |
| reaction | 207 |
| redox | 108 |
| reductase | 258 |
| reference solution | 50 |
| reforming | 173 |
| refraction contrast | 155 |
| regeneration | 38 |
| residual stress | 174 |
| resonant diffraction | 120 |
| resonant magnetic scattering | 182 |
| resonant photoemission | 90 |
| resonant scattering factor | 193 |
| resonant X-ray emission | 68 |
| resonant X-ray scattering | 69, 98, 103, 122, 141, 157 |
| resting skeletal muscles | 243 |
| rhamnose isomerase | 234 |
| rhodium(Rh) | 6, 15 |
| ribose-5-phosphate | 188, 189, 190, 191 |
| Rietveld | 123, 186, 187 |
| Rietveld analysis | 185 |
| ripple phase | 239 |
| RNA polymerase | 261 |
| rocking curve | 228 |
| Rpt3 | 192 |
| Ru complex | 14 |
| rubidium(Rd) ion | 3 |
| Runx1 | 231 |
| RVO3 | 84 |
| RXMS | 182 |
| |
| saposin fold | 229 |
| SBA-15 | 117 |
| scandia | 123 |
| SDPD | 5 |
| secondary order parameter | 122 |
| secretion | 229 |
| selective oxidation | 13 |
| self-assembly | 31 |
| semimetal | 55 |
| sensitivity | 283 |
| sensors | 169 |
| serpentine | 211 |
| sexithiophene | 57 |
| shear | 11 |
| short-chain dehydrogenase/reductase (SDR) | 252 |
| short-range order | 103 |
| Si(111) | 48, 53 |
| Si-LVV-Auger Si-1s-photoelectron coincidence spectra | 271 |
| Si-SiO2 | 61, 62 |
| Si/Mg | 270 |
| SiC/Mg | 270 |
| silica-germania | 169 |
| silica-titania | 170 |
| silicidation | 44 |
| silicide | 56 |
| silicon dioxide | 102 |
| silicon nitride | 187 |
| silicon(Si) | 46, 161, 162 |
| silver particles | 125, 129 |
| simulation | 23 |
| simultaneous SAXS/WAXD | 239 |
| single crystal | 196 |
| single-bunch mode operation | 272 |
| single-site photocatalyst | 110 |
| sinstrumentation | 30 |
| SiO2 | 9 |
| site selection | 20, 25 |
| skeletal muscle | 241 |
| skutterudite | 200 |
| small-angle scattering | 79 |
| small-angle X-ray scattering(SAXS) | 11, 18, 100, 101, 105, 125, 126, 127, 128, 130, 132, 136, 137, 138, 142, 143, 144, 148, 159, 163, 215, 217, 218, 219, 220, 221, 227, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 255, 259, 266 |
| soft X-ray | 256, 260 |
| soft X-ray emission spectroscopy(SXES) | 56, 68, 70, 80, 83, 113 |
| soil | 269 |
| solid solution | 171, 197 |
| solution | 4, 29 |
| solution complex | 6 |
| solution structure | 215, 221, 237, 238 |
| solution X-ray scattering | 217, 218, 219, 245 |
| sorption | 51 |
| sphingomyelin | 239 |
| spin density | 82 |
| spin magnetic form factor | 93 |
| spin reorientation transition | 40, 60 |
| spin state | 118 |
| spinel | 178 |
| spinodal temperature | 142 |
| spintronics | 147 |
| src SH3 | 219 |
| SrRuO3 | 85 |
| SrTiO3(STO) | 43, 165 |
| (SrTiO3)1-x(La0.6Sr0.4MnO3)x mixed-crystal | 74 |
| SrVO3 | 71 |
| standing wave | 45 |
| stannite | 120 |
| state selection | 20 |
| statistics | 276 |
| steel | 172 |
| STJ | 282 |
| STM | 39 |
| strained Si | 267 |
| strongly correlated electrons | 75, 76 |
| structural phase transition | 153 |
| structure | 4, 204, 205, 209, 230, 266 |
| substrate specificity | 225 |
| sugar | 222 |
| sugar phosphorylase | 251 |
| sugar transporter | 250 |
| sugar-binding protein | 250 |
| sulfide | 120 |
| Sulfolobus tokodaii | 222 |
| sulfur(S) | 27, 222 |
| superconductivity | 83 |
| supercritical carbon dioxide | 126 |
| supercritical fluids | 109 |
| superexchange interaction | 72 |
| supported catalyst | 9, 14 |
| surface segregation | 149 |
| surface structure | 53 |
| surface X-ray scattering | 39 |
| surfactant | 11, 143 |
| synchrotron radiation angiography | 264 |
| |
| t2g electron | 78 |
| t-BuONa | 106 |
| Talbot interferometer | 277 |
| Te | 131 |
| TFP | 238 |
| thermal diffusion | 91 |
| thermal stability | 8 |
| thermodynamics | 248 |
| thermography | 149 |
| Thermoplasma acidophilum | 252 |
| thermostability | 224 |
| Thermus flavus | 224 |
| Thermus thermophilus | 225 |
| thin film | 17, 57, 71, 73, 77, 85, 94, 140, 158, 267 |
| thiophene | 67 |
| thioredoxin | 226 |
| threshold photoelectron spectroscopy | 284 |
| Ti2O3 | 70 |
| time resolved SAXS | 132 |
| time-dependence | 41 |
| time-of-flight spectra | 272 |
| time-resolved measurement | 143, 211, 280 |
| tin tetraiodide | 208 |
| tin(Sn) | 6, 16 |
| TiO2 | 69, 114, 145 |
| TiO2 photocatalyst | 111 |
| TiO2(110) | 63, 279 |
| titanosilicate | 66 |
| tomography | 273, 277 |
| topography | 155, 267 |
| toroidal mirror | 288 |
| trace element | 265 |
| transcription factor NF-ΚB | 217, 247 |
| transcriptional reguration | 232, 253 |
| transdermal drug delivery | 246 |
| transformation kinetics | 198 |
| transition | 204, 205, 209 |
| transition mechanism | 196 |
| transition metal | 147, 213 |
| transition metal oxides | 87 |
| tripeptidyl-peptidase | 249 |
| |
| ulfide | 30 |
| ultra-high homogeneity | 168 |
| ultra-low expansion glass | 170 |
| underpotential deposition | 39 |
| uranium | 51 |
| uranium(U) | 23, 51 |
| uranyl chloride | 24, 34 |
| |
| V K-edge | 108 |
| VAD silica | 168 |
| valence band structure | 52, 54 |
| valence fluctuation | 141 |
| valence state | 20 |
| valency | 73 |
| vanadate | 178 |
| vanadium(V) | 20, 25 |
| vesicles | 11 |
| Vibrio vulnificus | 229 |
| visible light | 25 |
| VUV | 102 |
| VUV spectrograph | 283 |
| |
| water-in-scCO2 emulsions | 125, 129 |
| weakly segregaed | 163 |
| wet condition | 260 |
| wide-angle X-ray diffraction | 246 |
| wormlike chain | 18 |
| |
| X-ray absorption near edge structure(XANES) | 19, 26, 27, 30, 51, 66, 108, 110, 111, 112, 134, 145, 146, 161, 165, 166, 168, 169, 170, 173, 268, 269 |
| X-ray absorption spectroscopy(XAS) | 17, 44, 72, 73, 80, 81, 83, 90, 114, 134, 165, 166 |
| X-ray anomalous dispersion effect | 159 |
| X-ray confinement | 194 |
| X-ray detector | 280 |
| X-ray diffraction(XRD) | 53, 61, 104, 176, 199, 200, 211, 241 |
| X-ray fiber diffraction | 243 |
| X-ray fluorescence holography | 278 |
| X-ray magnetic circular dichroism(XMCD) | 40, 45, 60, 114, 118 |
| X-ray magnetic diffraction | 82, 93, 274 |
| X-ray microscope | 286 |
| X-ray microscopy | 260 |
| X-ray photoelectron spectroscopy(XPS) | 47, 67, 99, 147, 161 |
| X-ray Raman scattering | 69 |
| X-ray scattering | 84 |
| X-ray topography | 206, 267 |
| X-ray waveguide | 194 |
| XAFS | 6, 10, 19, 23, 25, 50, 58, 63, 64, 161, 162, 164, 172, 173, 279 |
| XANAM | 49 |
| XSTRIP | 280 |
| |
| YGaO3 | 119 |
| yttrium fluoride | 7, 33 |
| yttrium(Y) | 152 |
| |
| zeolite | 9, 111 |
| zirconia | 123 |
| ZnO | 52, 54, 90 |
| zone plate | 286 |
| zooming tube | 260 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2006
Copyright © 2007 by High Energy Accelerator Research Organization (KEK)