|
Photon Factory Activity Report 2003 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
2 | |
| 2D Mapping | 132 |
| |
| 4f state | 114 |
| |
| 8YSZ | 162 |
| |
| α-amylase | 237 |
| α-galactosidase | 208 |
| absolute sensitivity | 264 |
| absorption factor | 4 |
| acarbose | 237, 228 |
| actin | 243 |
| activation | 236 |
| additive | 139 |
| adp-dependent glucokinase | 231 |
| adp-dependent phosphofructokinase | 231 |
| adsorption structure | 49 |
| aeolian dust | 20 |
| AFQ order | 99 |
| Ag | 88 |
| Ag(110) and Cu(110) | 72 |
| Ag(111) | 95 |
| Aggregation | 256 |
| AgI-doped glass | 170 |
| aging | 232 |
| aging effect | 162 |
| airborne particulate | 29 |
| Al2O3 | 193 |
| Al-phase E | 205 |
| alcaligenes faecalis | 225 |
| alkali halide | 71, 73 |
| alkanethiol | 95 |
| alloy | 148 |
| Amyloid beta-peptide | 248 |
| anaerobic enviroment | 28 |
| angle resolved ultraviolet photoemission spectroscopy | 83 |
| angle-resolved photoelectron spectroscopy | 61 |
| angle-resolved photoemission | 43, 44, 42, 45 |
| Angle-resolved photoemission spectroscopy | 103 |
| Animal | 251 |
| anomalous scattering | 191 |
| anomalous scattering | 89 |
| anomalous X-ray scattering | 166 |
| antiferromagnetism | 119 |
| Antiferromagnmetic domain | 68 |
| Apatite | 202 |
| archaea | 231 |
| ARPES | 86 |
| Arsenic | 254 |
| Arsenic Adsorption | 27 |
| Asmmetric Block Copolymer | 169 |
| atomic wire | 55 |
| attenuation length | 66 |
| Au | 55, 90 |
| Auger electron spectrum | 265 |
| autocrine motility factor | 233 |
| Autoionization | 2 |
| |
| Bacillus stearothermophilus | 196 |
| Bacillus thuringiansis | 214 |
| bacterial degradation | 230 |
| ball-milling | 135 |
| bcc-sphere | 122 |
| beam stopper | 4 |
| benzene oxidation | 30 |
| bicelle | 152 |
| bilayer | 234 |
| bimetallic | 21 |
| binuclear | 33 |
| Biomedical imaging | 249 |
| block copolymer | 168, 122 |
| BN | 92 |
| boiling | 11 |
| Bond length | 121 |
| bonded SOI | 253 |
| borazine | 92 |
| boron high-doped silicon | 132 |
| Borrmann effect | 197, 190 |
| brackish water area | 28 |
| Brain | 251 |
| bulk modulus | 204 |
| buried oxide layer | 65 |
| butene-1 | 180 |
| butterfly pattern | 178 |
| |
| C3H6 | 18 |
| C/W(110) | 86 |
| Ca1-xSrxRuO3 | 112 |
| Ca-oxalate | 142 |
| CaF2 | 182 |
| carbon monoxide | 49 |
| carbon nanotube | 108 |
| carbon substrate | 128 |
| carbonate | 207 |
| Catalysis | 51 |
| catalysis | 75 |
| Catalyst | 8, 38, 39, 40, 41 |
| catalyst | 141, 12, 13 |
| catalysts | 81, 82 |
| catalytic oxidation | 26 |
| CCD camera | 258, 259, 260, 261 |
| CDW | 186, 107 |
| Ce | 91 |
| Ceramics | 129 |
| Cerebral perfusion | 251 |
| ceria | 91 |
| chalcogenide | 146 |
| Charge disproportionation | 111 |
| charge order | 100 |
| Charge Ordering | 118 |
| charge ordering | 167, 153, 198 |
| chemical effects | 268 |
| chemical speciation | 29 |
| chitinase | 247 |
| chitinase A1 | 246 |
| chloride | 136 |
| chlorine | 183, 185 |
| chorismate synthase | 194 |
| cluster | 36 |
| cluster model analysis | 105 |
| cluster model analysis | 100 |
| CO | 47, 38 |
| Co(II) | 10 |
| Co(III) | 10 |
| CO-NO reaction | 40 |
| CoAl2O4 | 193 |
| Cobalt Acetylide | 17 |
| cofactor specificity | 226 |
| coherence multi-photon | 262 |
| coincidence | 2 |
| cold exposure | 250 |
| cold press | 124 |
| coloring | 159 |
| combinatorial chemistry | 123, 126 |
| complex | 172 |
| Congo | 164 |
| convolution | 157 |
| coordination environment | 170 |
| copolymer | 180 |
| core electron excitation | 98 |
| Core Site Models | 22, 10 |
| core-level photoemission spectroscopy | 55 |
| coronary angiography | 250 |
| coronary vasospasm | 250 |
| corrosion | 183, 185 |
| Cry protein | 214 |
| crystal | 220, 223 |
| crystal modification | 147 |
| crystal structure | 232, 199, 194, 218, 31, 216 |
| crystallization | 159, 138, 134 |
| Crystallography | 195 |
| crystallography | 196 |
| Cs | 47 |
| CTR scattering | 78 |
| Cu | 89, 39, 41 |
| Cu binding | 248 |
| Cu(001) and Ag(001) | 73 |
| Cu-ZSM-5 | 38, 40 |
| cumene | 230 |
| cupin-type phosphoglucose isomerase | 231 |
| CutA | 218 |
| CuZr alloy | 135 |
| CVD | 92 |
| cyclic transformation | 135 |
| cyclodextrin | 237 |
| cyclohexane | 34 |
| cylinder | 168 |
| cysteine | 224 |
| cytochrome P450nor | 229 |
| cytokine | 233 |
| cytosine deaminase | 215 |
| |
| D-galactose | 208 |
| d-Spacing | 132 |
| DAC | 207, 201 |
| dangling bond | 61 |
| de-coloring | 159 |
| Decalin | 160 |
| decay length | 71 |
| deconvolution | 157 |
| dehydrated gel | 158 |
| dehydration | 139 |
| dehydroaromatization | 252 |
| Dehydrogenation catalyst | 160 |
| DEI | 273 |
| denitrification | 225, 229 |
| deNOx | 51 |
| dense hydrous magnesium silicate | 205 |
| density gradient | 60 |
| depth profile | 76, 66 |
| depth-resolved XMCD | 80 |
| detergent | 152 |
| Dictyostelium discoideum | 242 |
| diffaction imaging | 123, 124, 261 |
| diffraction | 184 |
| Diffraction Topography | 197 |
| diffusion | 172 |
| digital electronics | 268 |
| diluted magnetic semiconductor | 105, 151 |
| dioxin | 230 |
| dioxygenase | 230, 216 |
| directed evolution | 227 |
| directional dichroism | 154 |
| dislocation | 130 |
| dissociative photoionization | 5 |
| Dnr | 225 |
| Domain switching | 129 |
| doped | 19 |
| Dosimeter | 275 |
| doubly excited states | 5, 3 |
| drawing | 180 |
| drug design | 238 |
| DXAFS | 9, 37, 40 |
| DyMn2O5 | 119 |
| |
| EF-hand protein | 245 |
| effective inelastic mean free path | 114 |
| efflux pump | 217 |
| electro-oxidation | 21 |
| electro-reduction | 21 |
| Electrochemistry | 64 |
| electroclinic effect | 150 |
| Electrodeposition | 128 |
| electron correlation | 100 |
| electron density | 78, 189 |
| electron density distribution | 166 |
| electron mean free path | 110 |
| electronic structure | 87, 107 |
| element | 206 |
| element mapping | 258, 259 |
| elemet specific analysis | 270 |
| elongation factor eEF-1A | 242 |
| emulsifier | 138 |
| Energy Barrier | 156 |
| energy dispersion | 69 |
| energy filtered | 90 |
| energy-dispersive diffraction | 260 |
| energy-dispersive spectroscopy | 274 |
| Environment | 255 |
| epitaxial layer | 130 |
| Equation of state | 202 |
| ESR | 116 |
| estuarine sediment | 28 |
| ethylene | 46 |
| Eu3S4 | 198 |
| EuPd2Si2 | 104 |
| europium | 19 |
| EUVL | 257 |
| EXAFS | 146, 176, 95, 23, 18, 12, 140, 13, 24, 248 |
| exafs | 148 |
| EXPEEM | 90 |
| extraction | 15 |
| extradiol dioxygenase | 219 |
| |
| Fatigue crack | 129 |
| Fe | 89, 80, 50 |
| Fe-zeolite | 33 |
| Fe/Tb | 114 |
| female | 250 |
| ferredoxiin | 221 |
| ferrielectric | 119 |
| ferrite | 224 |
| Ferrites | 155 |
| Ferromagnetism | 117, 115 |
| ferromagnetism | 151 |
| ferromagnets | 109 |
| first principles calculations | 163 |
| First-Row Transition Metal Ion | 16 |
| Flooded period | 254 |
| flow | 223 |
| fluid inclusion | 11 |
| fluorescence | 85 |
| Fluorescent X-ray CT | 251 |
| fluorescent XAFS | 149 |
| Fourier analysis | 157 |
| fractionation | 11 |
| friction | 88 |
| fuel cell | 21 |
| full-field imaging | 267 |
| functional versatility | 215 |
| furnace | 192 |
| |
| GaAs | 197, 70 |
| GaFeO3 | 154 |
| GaNEu | 174 |
| GdB6 | 131 |
| Gel | 164, 7 |
| gel | 139 |
| Germanium-silicon (GeSi) | 121 |
| GH family 15 | 228 |
| glass network | 170 |
| glass transition | 63 |
| glucoamylase | 228 |
| glucodextranase | 228 |
| glutamate dehydrogenase | 236 |
| glycolysis | 196 |
| glycolytic pathway | 231 |
| GM3 | 213 |
| Gold | 137, 140 |
| Gold Nanorod | 256 |
| Graft copolymer | 177 |
| grancalcin | 245 |
| graphite | 96, 97, 62 |
| Grazing incidence | 181 |
| GRIP | 195 |
| GroEL chaperonin | 222 |
| guanine deaminase | 215 |
| Gyroid | 169 |
| |
| H2 | 5 |
| halo pattern | 150 |
| halophilic protein | 221 |
| HCl | 24 |
| HDA | 75 |
| HDS | 75 |
| heavy metal | 11 |
| heavy metal sulfide | 28 |
| helical twisting | 243 |
| Heme oxygenase | 211 |
| Heusler-type shape memory alloy | 179 |
| hex-cylinder | 122 |
| HfO2 gate insulators | 53 |
| High Pressure | 203 |
| high pressure | 199, 168, 205, 204 |
| high resolution | 211 |
| high temperature | 192 |
| high x-ray energy | 249 |
| high-pressure | 188 |
| high-redundancy data collection | 272 |
| highly charged ion | 263 |
| homoisocitrate dehydrogenase | 227 |
| host-guest | 32 |
| human transcription factor NF-κB | 241 |
| humite | 188 |
| Hydrated water | 17 |
| Hydration | 140 |
| hydration | 234 |
| hydride transfer | 229 |
| hydrodesulfrization reaction | 173 |
| hydrogen adsorption | 86 |
| hydrogen bond | 211 |
| hydrogen content | 199 |
| hydrogen storage | 21 |
| Hydrogenation | 8 |
| hydrogenolysis | 34 |
| Hydrolases | 10 |
| hydrous ringwoodite | 199 |
| hydroxide | 200 |
| hyperfine magnetic field | 113 |
| hyperthermophilic archaeon | 236 |
| |
| Ice | 234 |
| Image reconstruction | 210 |
| Imaging | 90 |
| imaging | 260, 125, 126 |
| improper ferroelectric | 119 |
| in situ | 25 |
| In vivo imaging | 251 |
| in-situ PES | 102 |
| in-situ XAFS | 161, 75, 141, 173 |
| InAs | 203 |
| indirect magnetic coupling | 143 |
| indium | 81 |
| InGaP | 70 |
| inhomogeneous sample | 123 |
| inorganic giant molecules | 272 |
| interface | 80, 85, 50, 184, 114 |
| interface roughness | 60 |
| intermediate | 239 |
| intermediate spin | 187 |
| iodine | 172 |
| ion conductor | 125 |
| ion implantation | 193 |
| ion-irradiation | 62 |
| IP | 145 |
| Ir | 51 |
| Ir 5d | 100 |
| Iridium | 34 |
| iron | 165 |
| iron oxide | 201 |
| ITOX | 65 |
| |
| K emission | 268 |
| KCl | 73 |
| kidney | 249 |
| Kinetics | 38 |
| Kratky plot | 242 |
| KUSY | 173 |
| |
| La1-xSrxFeO3 | 111, 101, 103 |
| La1-xSrxMnO3 | 56 |
| LaCoO3 | 187 |
| lanthanide | 268 |
| laser induced fluorescence | 263 |
| laser ion source | 263 |
| laser MBE | 102 |
| Laser molecular beam epitaxy | 54 |
| Laser-MBE | 111, 101, 56, 103 |
| LaSrCoO3 | 187 |
| lattice compression | 205 |
| lattice distortion | 131 |
| Lattice Plane Orientation | 132 |
| lattice undulation | 253 |
| layer thickness | 59 |
| layered oxide | 176 |
| length | 240 |
| leuco dye | 159 |
| LiCl and KCl | 71 |
| light illumination | 270 |
| linear dichroism | 68 |
| Liquid | 203 |
| liquid crystal | 150 |
| liquid gallium | 166 |
| lithium battery | 176 |
| lithium ferrite | 126 |
| local structure | 144, 151 |
| long-chain alkyl type developer | 159 |
| long-haul transportation | 20 |
| low-dimensional material | 96, 97 |
| low-dimensional system | 58 |
| lysine biosynthesis | 227 |
| lysozyme | 222 |
| |
| Macromonomer | 177 |
| magnetic anisotropy | 49 |
| Magnetic circular dichorism of X-ray emission spectroscopy | 155 |
| Magnetic Compton profile | 165 |
| magnetic domain structure | 113 |
| magnetic fieled induced shape memory | 179 |
| magnetic film | 79 |
| magnetic thin film | 49 |
| magnetic x-ray scattering | 131 |
| magnetism | 89 |
| magnetization | 269 |
| magnetostriction | 269 |
| malaria | 238 |
| malate dehydrogenase | 226 |
| mammalian cell | 210 |
| mammalian cell recognizing protein | 214 |
| Manganese | 26 |
| Manganese Oxides | 120 |
| martensitic transformation | 179 |
| maximum-entropy method | 192 |
| MCD | 117 |
| MCD XES rare-earth | 127 |
| MCP | 115 |
| MCXD | 128 |
| membrane protein | 217 |
| Mesoporous Iron | 27 |
| mesoporous material | 12, 13 |
| mesoporous silica | 161 |
| mesostructure | 181 |
| metal adsorption | 43, 44, 42, 45 |
| metal induced gap states | 71, 73, 93, 94 |
| Metal ions | 6 |
| metal magnetic multilayer | 143 |
| Metal-Oxide Interface | 84 |
| Metamorphism | 14 |
| Meteorite | 14 |
| methane-reforming | 82 |
| microangiography | 250 |
| microdomain | 168 |
| microemulsion | 212 |
| Microphase Separation | 169 |
| mixed micelle | 152 |
| mixed valence | 198 |
| (Mn, Zn, Fe)3O4 | 191 |
| Mn-Zn ferrite | 191 |
| Mo K-edge XAFS | 252 |
| Mo oxide | 161 |
| Modified Metal Oxide surface | 84 |
| Molecular Imprinting | 8 |
| molecular nitrogen | 3 |
| molecular orientation | 83 |
| molecular oxides | 31 |
| molecular oxygen | 30 |
| molecular structure | 23 |
| molten salt | 136 |
| molybdenum | 31 |
| molybdenum polycrystals | 261 |
| MoO3 catalyst | 252 |
| MoO3/MgO | 35 |
| motor protein | 235 |
| movie | 125 |
| multi drug resistance | 217 |
| multiferroic | 154, 119 |
| multilaye | 257 |
| multilayer | 165, 85 |
| multiple detector system | 157 |
| multiply excited states | 3 |
| muscle | 244 |
| muscle contraction | 243 |
| mutant | 211 |
| myosin | 243, 244, 235 |
| |
| NADH binding | 229 |
| nanoparticle | 148 |
| Nanoparticles | 137, 171 |
| nanoparticles | 19 |
| NbN | 141 |
| NC-AFM | 98 |
| Ne | 2 |
| NEXAFS | 96, 71, 72, 163, 92, 47, 93, 94 |
| Ni | 80, 74 |
| Ni2P | 173 |
| nickel | 183, 82, 128, 29, 185 |
| nickel colloid | 110 |
| [NiFe]-Hydrogenases | 22 |
| NIPA/SA | 158 |
| nitric oxide sensor | 225 |
| nitriding process | 141 |
| Nitrogen-Donating Solvent | 16 |
| Nitrous Oxide | 33 |
| NO reduction | 13 |
| noble metal | 148 |
| nonmagnetic-layer thickness | 143 |
| nuclear resonant scattering | 113 |
| |
| O2 | 1 |
| O/W emulsion | 138 |
| O1s | 90 |
| octane | 93 |
| oil-water interface | 138 |
| one-dimensional structure | 72 |
| Orbital Order | 120 |
| Orbital Ordering | 118 |
| orbital ordering | 109 |
| order-order transition | 122 |
| ordered structure | 65 |
| organic insulator | 93, 94 |
| Organic matter | 14 |
| organic molecular beam deposition | 83 |
| Organotin | 255 |
| orientation | 180, 172 |
| orientation distribution function | 72 |
| orrosion | 184 |
| oxidation-reduction reaction | 20 |
| oxide surfaces | 43, 44, 42, 45 |
| ozone | 26 |
| |
| p65/L-plastin | 245 |
| Paddy filed | 254 |
| palladium | 165, 13, 32 |
| Parasporin | 214 |
| particle size effect | 35 |
| PCB | 216 |
| Pd-Pt | 75 |
| PDZ | 195 |
| PEEM | 68 |
| pepsin | 222 |
| perovskite | 133 |
| perturbation | 244 |
| phase tomography | 273 |
| Phase transition | 133, 58 |
| phase transition | 206, 78, 207, 201, 189, 200 |
| phase-contrast | 266 |
| phase-contrast imaging | 273 |
| Phase-contrast x-ray CT | 249 |
| phases | 123 |
| phonon dispersion | 186 |
| Phospholipid | 234 |
| phospolipid | 152 |
| photo diode | 4 |
| photo-metathesis | 161 |
| photoabsorption | 1 |
| photocatalyst | 161 |
| Photoelectron diffraction | 58 |
| photoelectron diffraction | 49 |
| photoelectron spectrometer | 265 |
| Photoelectron spectroscopy | 54 |
| photoelectron spectroscopy | 87 |
| photoemission | 108, 100 |
| photoemission and dichroism | 67 |
| Photoemission spectroscopy | 111, 101, 56 |
| photoemission spectroscopy | 104, 52, 53, 112, 69, 57 |
| photon-photon coincidence | 3 |
| photon-stimulated desorption | 62 |
| Photoreduction | 171 |
| Piezoelectric | 129 |
| plasma diagnositcs | 264 |
| plasma polymer | 76 |
| platinum | 81 |
| PMA | 77 |
| polarization-dependent ARPES | 107 |
| polarized NEXAFS | 62 |
| polychlorinated biphenyl | 230 |
| Polyisocyanate | 177 |
| polyoxometalates | 272, 31 |
| polyrotaxane | 178 |
| potassium | 82 |
| powder diffraction | 192, 123, 260, 133, 157 |
| prefered orientation | 124 |
| Preparation | 160 |
| Pressure | 156 |
| pressure | 116 |
| projection microscopy | 210 |
| projection-type microscope | 258, 260 |
| propylene | 180 |
| protection | 246 |
| protein | 246, 223, 212 |
| protein folding | 209 |
| protein nonnative structure | 209 |
| protein plasticity | 215 |
| protein-DNA interaction | 241 |
| proteinase | 239 |
| proton channel | 229 |
| Proton conductor | 133 |
| Pseudomonas | 217 |
| Pt | 47 |
| Pt/C | 160 |
| PTRF-XAFS | 84, 74 |
| pulley | 178 |
| pump-probe technique | 46 |
| Pyrococcus horikoshii | 218 |
| Pyruvate kinase | 196 |
| |
| quality | 223 |
| quantitative analysis | 267 |
| quick imaging | 258 |
| |
| radiation damage | 246 |
| ramp stretch sinusoidal oscillation | 240 |
| reaction mechanism | 211 |
| red | 164 |
| Redox condition | 254 |
| Reduction | 38 |
| reduction | 81 |
| reduction of Mo | 252 |
| reesonant scattering | 198 |
| reflectivity | 257 |
| resonance photoemission | 114 |
| Resonant Scattering | 197 |
| Resonant X-ray magnetic diffraction | 269 |
| Resonant X-ray Scattering | 120 |
| Resonant x-ray scattering | 118 |
| resonant x-ray scattering | 99, 167, 153 |
| response | 275 |
| Reverse micelles | 137, 140 |
| Rf | 24 |
| Rh-Amine Complex | 8 |
| rhenium | 30 |
| rhodium | 15 |
| Rietveld analysis | 192 |
| Rodlike polymer | 177 |
| rolling direction | 124 |
| RuO2/CeO2 | 18 |
| ruthenium | 25 |
| Rydberg state | 2 |
| |
| SAM | 95 |
| SAXS | 147, 137, 246, 247, 177, 178, 134, 158, 171, 139, 239, 4, 235 |
| Sb2S3 | 189 |
| scattering | 257 |
| Schuman-Runge | 1 |
| Sediment | 255 |
| Self-assembled monolayer(SAM) | 64 |
| self-assembly | 32 |
| senescence marker protein | 232 |
| sexithienyl | 72 |
| Shank | 195 |
| Shape Selectivity | 8 |
| shikimate pathway | 194 |
| Si | 55, 50 |
| Si(111)-6x1-Ag | 78 |
| SiC | 130 |
| Silicon | 58 |
| silicon carbide | 96, 130, 97 |
| Silver | 137, 171, 140, 58 |
| SIMOX | 65 |
| simultaneous measurement | 147 |
| Single Chain Magnet | 156 |
| single crystal diffraction | 189 |
| single crystal X-ray diffraction | 272, 31, 188 |
| single molecular magnet | 23 |
| single photon counting | 259, 261 |
| site occupancy | 191 |
| skeletal muscle | 240 |
| skutterudite | 204 |
| SLH domain | 228 |
| slide-ring gel | 178 |
| small-angle scattering | 113 |
| Small-Angle X-ray Scattering | 169 |
| Small-angle X-ray Scattering | 164 |
| Small-angle X-ray scattering | 168 |
| small-angle x-ray scattering | 241, 242, 222 |
| SMP30 | 232 |
| SOFC | 162 |
| soft phonon | 186 |
| Soft X-ray | 121 |
| soft X-ray | 85 |
| soft X-ray absorption spectroscopy | 106 |
| soft X-rays | 210 |
| SOI | 253, 65 |
| Sol | 7 |
| solid electrolyte | 162 |
| Solid solution | 121 |
| solid-electrolyte | 125 |
| solution structure | 247 |
| solution X-ray scattering | 209 |
| solution x-ray scattering | 221 |
| Solvation Structure | 16 |
| solvent | 134 |
| SOPC | 213 |
| spatial distribution | 73 |
| Specation | 254 |
| Speciation | 255, 39, 41 |
| spectral weight transfer | 112 |
| specular reflection | 59, 60 |
| spin density distribution | 109 |
| spin reorientation transition | 79 |
| spin-Peierls transition | 116 |
| spinach | 142 |
| spinel type structure | 149 |
| SPS | 162 |
| SR-XRF | 142 |
| SrRuO3 | 102 |
| standing wave | 85 |
| Steel | 183, 185 |
| steel | 184 |
| stibnite | 189 |
| STM | 270 |
| Strain | 70 |
| strain | 145 |
| strength | 145 |
| stress | 145 |
| substrate complex | 216 |
| substrate specificity | 227 |
| sugar-complex | 208 |
| sulfide | 25 |
| Sulfur | 14 |
| sulfur | 206, 224 |
| Superconductivity | 274 |
| Supercritical carbon dioxide | 171 |
| supercritical fluid | 148, 4 |
| superionic conducting glass | 170 |
| superlattice | 153 |
| support | 81 |
| Surface | 74 |
| surface | 80, 63 |
| surface band structure | 61 |
| surface elemental analysis | 98 |
| surface plasmon | 110 |
| surface states | 69 |
| surface x-ray diffraction | 78 |
| surfactant | 212 |
| SXRD | 64 |
| Synchrotron radiation | 249 |
| syndiotactic polystyrene | 134 |
| |
| TaS2 | 186 |
| TbB2C2 | 99 |
| TBP | 24 |
| TDS | 186 |
| temperature dependence | 179 |
| template | 138 |
| template effect | 32 |
| tension | 240 |
| TeSe | 144 |
| Tetra-peptide ligand | 22 |
| tetratetracontane | 93, 94 |
| texture | 124 |
| thermus flavus | 226 |
| Thermus thermophilus | 227, 219 |
| thick filament | 244 |
| thin film | 77, 92, 59, 60 |
| Thin Films | 120 |
| Thin films | 111, 101, 103 |
| thin films | 112 |
| threshold electron | 2 |
| Ti | 163 |
| tideland sediment | 28 |
| time-resolve small angle X-ray scattering | 122 |
| time-resolved measurement | 46, 150 |
| Tin | 255 |
| tin | 15 |
| TiO2 | 74 |
| TiO2(110) | 84 |
| Titania | 6, 7 |
| tomography | 266, 267 |
| Tomonaga-Luttinger liquid | 108 |
| toroidal | 265 |
| toshiohta | 48 |
| Total Reflection | 74 |
| trace elements | 276 |
| transient adsorption | 46 |
| transparent conducting oxide | 149 |
| transporter | 217 |
| tribology | 88 |
| tRNA | 220 |
| tRNA synthetase | 220 |
| TTC | 94 |
| tubular-structure | 32 |
| tumor | 233 |
| tungsten surface | 87 |
| TWAD | 191 |
| two-dimensional electron system | 69 |
| TXRF | 276 |
| |
| UGe2 | 117, 115 |
| unfolding | 239 |
| |
| Valence Change | 40 |
| Valence transition | 104 |
| VDC | 198 |
| vicinal surface | 55 |
| VUV spectrograph | 264 |
| |
| wasaxs | 175 |
| water | 200 |
| Wavelet transform | 59 |
| WAXS | 147, 134 |
| WD | 276 |
| weddellite | 142 |
| whewellite | 142 |
| white x-ray | 276 |
| white X-rays | 259, 261 |
| Wolter Mirror | 267 |
| |
| X-ray anomalous dispersion | 144 |
| X-ray beam condensation | 190 |
| X-ray beam confinement | 190 |
| X-ray detectors | 274 |
| X-ray diffraction | 243, 116, 203, 204 |
| X-ray fluorescence | 258, 259, 267, 125, 126, 268 |
| X-ray irradiation | 256 |
| X-ray laser | 190 |
| X-ray magnetic diffraction | 109 |
| x-ray microbeam | 181 |
| X-ray microbeams | 150 |
| x-ray microscope | 266 |
| X-ray photoelectron spectroscopy | 96, 97 |
| X-ray polarizability | 197 |
| X-ray reflectivity | 59, 143, 60 |
| x-ray reflectivity | 63 |
| x-ray solution scattering | 245 |
| x-ray standing waves | 50 |
| x-ray structure | 237 |
| x-ray topograph | 253 |
| X-ray topography | 130 |
| X-ray wave-guide | 190 |
| XAFS | 6, 17, 160, 25, 27, 183, 135, 77, 7, 30, 126, 162, 16, 15, 14, 19, 74, 185, 121, 136, 151 |
| XANAM | 98 |
| XANES | 224, 176, 183, 187, 35, 18, 91, 29, 185 |
| Xerogel | 6 |
| XMCD | 79, 187 |
| XPS | 46, 76, 66, 47 |
| XSW | 182 |
| Xyloglucan | 164 |
| |
| zeolite | 146, 30, 106 |
| zinc oxide | 19, 61 |
| zirconium | 12 |
| ZnCrTe | 151 |
| ZnO | 105 |
| zone plate | 266, 210 |
| Zr | 24 |
| ZSM-5 Zeolite | 39, 41 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2003
Copyright © 2004 by High Energy Accelerator Research Organization (KEK)