|
Photon Factory Activity Report 2008 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
3 | |
| 3D-nano ESCA | 78 |
| |
| 4f electron | 79 |
| |
| 6H-SiC | 71 |
| |
| α-aminoadipate aminotransferase | 203 |
| α-Crystallin | 227 |
| α-helix-rich intermediate | 193, 194 |
| abnormal aggregation | 227 |
| ABS resin disk CRM | 45 |
| acetylene | 22 |
| active site | 156 |
| adenine | 223 |
| adsorption | 22, 237 |
| Ag/Ge/Si(111) | 56 |
| AgCl | 76 |
| albite | 177 |
| alumina | 13 |
| aluminum (Al) | 59 |
| amorphous | 105 |
| amorphous zirconium tungstate | 174 |
| amyloid fibril | 206 |
| anaerobic crystallization | 201 |
| anatase | 24, 86 |
| anilic acid | 102 |
| annealing | 54 |
| anthropogenic dust particle | 21 |
| antibiotics | 226 |
| antibody | 191 |
| antiferromagnetism | 130 |
| apomygloboin mutant | 206 |
| Arabidopsis thaliana | 223 |
| ARPES | 56, 61, 66, 67, 70, 79, 80, 81, 82, 83, 91 |
| arsenic (As) | 18, 19, 237 |
| arsenopyrite | 18 |
| aspartate kinase | 204 |
| ATP synthesis | 198 |
| Au electrode | 76 |
| Auger-electron spectroscopy | 55 |
| auto-ionization | 155 |
| Avogadro constant | 158 |
| |
| β-Crystallin | 227 |
| β-lactamase | 226 |
| β-lactoglobulin | 193 |
| BaFe2As2 | 82 |
| BaNi2P2 | 80 |
| BaPrO3 | 155 |
| battery | 41 |
| bent crystal | 168 |
| bicontinuous network structure | 147 |
| biomass | 25 |
| biorefinery | 11 |
| bismuth (Bi) | 70, 105 |
| block copolymer | 103, 110, 119, 123, 137, 139 |
| block-type supramacromolecule | 34 |
| blood | 4 |
| BLUF | 209 |
| blur | 247 |
| boron carbonitride (BCN) | 36, 97 |
| bulk modulus | 184 |
| bystander effects | 210 |
| |
| C70 fullerene | 95 |
| cabon (C) | 238 |
| CaF2 | 117 |
| calcium (Ca) | 195 |
| calcium chloride | 17 |
| carbapanem | 226 |
| carbon alloy catalyst (CAC) | 153, 238 |
| carbon dioxide (CO2) | 40, 113, 120 |
| carbon fiber | 140 |
| carbon nanotube | 95 |
| carbon support | 77 |
| catalyst | 6, 9, 10, 11, 13, 14, 25, 31, 32, 35, 46, 53, 68, 77, 99, 107, 108, 109, 134, 143, 149, 152, 153, 234, 235, 238 |
| catalytic partial oxidation | 149 |
| cathode | 153 |
| ccoordination network | 28 |
| CdSe | 236 |
| CdZnTe | 122 |
| CeB6 | 98 |
| cell death | 210 |
| CeO2 | 111 |
| CeRh3B2 | 92 |
| ceria | 99 |
| cerium (Ce) | 79, 189 |
| charge density | 64 |
| charge ordering | 101, 104, 112 |
| charging-discharging process | 41 |
| chemical state | 64 |
| chloride | 231, 232 |
| cholesterol | 224 |
| chromism | 20 |
| Clostridium botulinum | 212 |
| cluster | 59 |
| Co complex | 30 |
| Co-Mo sulfide catalyst | 6, 35 |
| cobalt (Co) | 59, 71, 73, 86, 149 |
| cobalt (Co) nanoparticle | 117 |
| cobalt oxide (Co3O4) | 48 |
| coenzyme B12 | 218 |
| coincidence spectroscopy | 55 |
| coincient crystallization | 138 |
| combined sewer overflow (CSO) | 52 |
| COMMD | 221, 222 |
| compressive strength | 140 |
| concerted inhibition | 204 |
| condensed water | 240 |
| confinement | 49 |
| conformation | 214 |
| contrast variation technique | 207 |
| coordination | 26, 27, 30, 51 |
| copper (Cu) | 37, 39, 222 |
| copper-planted mesoporous silica | 39 |
| coprecipitation | 237 |
| core | 121 |
| core/shell structure | 143 |
| Corynebacterium glutamicum | 204 |
| CotB2 | 215 |
| Cr (VI) | 45 |
| crystal orientation | 139 |
| crystal structure | 99 |
| crystalline homopolymer | 139 |
| crystalline-amorphous diblock copolymer | 103 |
| CT | 247, 252 |
| CT excitation | 84 |
| CuMFI | 22, 44 |
| CuMn-spinel | 134 |
| cuprous oxide Cu2O | 67 |
| cyanide | 38 |
| cyclodextrin | 224 |
| cycloocta-9-en-7-ol | 215 |
| cyclooctatin biosynthesis | 215 |
| cytochrome | 208 |
| |
| defect | 57 |
| deformation | 177 |
| deformation experiment | 180 |
| dehydration | 23 |
| dendrimer | 12 |
| density | 178, 179, 252 |
| depth profile | 73, 74, 78 |
| depth-resolved XMCD | 73 |
| diamond-anvil cell | 172 |
| dielecrics | 162 |
| diffraction-enhanced imaging (DEI) | 229, 252 |
| dihydroorotate dehydrogenase | 165 |
| diluted magnetic semiconductor (DMS) | 96, 118, 122, 136, 154 |
| dioxin | 232 |
| dioxygenase | 201 |
| dislocation | 106, 164 |
| dissociation | 2 |
| distribution | 225 |
| diterpene cyclase | 215 |
| double crystalline diblock copolymer | 138 |
| drug design | 196, 213 |
| DSC | 119 |
| DWBA | 137 |
| DXAFS | 53 |
| dynamics | 1 |
| |
| effective mass | 56 |
| electrocatalysis | 156 |
| electrochemistry | 47 |
| electrolyte solutions | 49 |
| electron collision | 3 |
| electron transfer | 192 |
| electron-ion coincidence spectroscopy | 240 |
| electronic state | 56 |
| electronic structure | 70, 80, 155 |
| elemental analysis | 60 |
| enamel | 228 |
| epitaxial | 132 |
| equation of state | 172 |
| ethanolamine ammonia-lyase | 218 |
| ethylene glycol | 193 |
| europium (Eu) | 146 |
| europium titanate (EuTiO3) | 133 |
| EUV | 233 |
| EXAFS | 4, 5, 6, 9, 10, 11, 13, 14, 16, 17, 22, 25, 29, 30, 31, 32, 33, 35, 39, 41, 42, 44, 46, 47, 48, 49, 50, 51, 57, 68, 75, 93, 107, 108, 109, 113, 114, 116, 118, 129, 131, 132, 134, 149, 150, 151, 152, 154, 156, 222, 234, 235, 236, 237 |
| excess scattering | 103 |
| extracellular protein | 197 |
| |
| F-spondin | 197 |
| FAD | 209 |
| Fe complex | 51 |
| Fe(III) hydroxides | 19 |
| Fe-Si | 178 |
| FeAs system | 93 |
| FeRhPd | 130 |
| fermentation | 204 |
| Fermi surface | 80 |
| ferredoxin | 192 |
| ferredoxin reductase | 192 |
| ferrite | 116 |
| ferritin | 207 |
| ferroelastic | 94, 101 |
| ferroelectric | 87, 112, 141 |
| ferromagnetic | 94 |
| FeS | 179 |
| fluctuation | 40 |
| fluorescence | 131 |
| fluorescent X-ray CT | 230 |
| fly ash | 100, 231, 232 |
| fragmentation | 1 |
| FT-IR | 72 |
| fuel cell | 153, 238 |
| fullerene | 95, 97 |
| |
| γ-ray detector | 122 |
| GaAs crystal | 167 |
| GaN:Cr | 96 |
| gap junction | 210 |
| gate insulator | 61, 64 |
| geranylgeranyl diphosphate | 215 |
| GH63 | 211 |
| GISAXS | 137 |
| GIXRD | 117 |
| GIXS | 239 |
| glutamate | 161 |
| glutaminase | 161 |
| gold (Au) | 8, 42, 172 |
| gradational system | 141 |
| graphite | 69, 75, 97 |
| grating | 242, 243 |
| grazing incidence | 106 |
| Gynura pseudochina | 225 |
| |
| hafnium (Hf) | 54 |
| hair | 4, 219 |
| halophytic enzyme | 200 |
| heat shock protein | 217 |
| heavy metal | 100 |
| hemagglutinin | 212 |
| hepatic fibrosis | 229 |
| heterogeneous catalyst | 9 |
| heterojunction | 66, 67 |
| HfSiON | 64 |
| high pressure | 7, 102, 121, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190 |
| high speed | 243 |
| high temperature X-ray diffraction | 126 |
| high-Tc superconductor | 81 |
| high-energy | 252 |
| high-k | 54, 61, 64 |
| high-pressure EXAFS chamber | 235 |
| high-pressure transformation | 190 |
| high-temperature ferromagnetism | 118 |
| histone chaperone | 202 |
| hole conductivity | 155 |
| hollow sphere | 48 |
| homocitrate synthase | 203 |
| HOPG | 75 |
| hydrate malt | 17 |
| hydrodesulfurization (HDS) | 6, 35, 72, 234, 235 |
| hydroformylation | 9 |
| hydrogen bonding | 34 |
| hydrogenase maturation protein | 199 |
| hydrogenation | 14 |
| hydrogenolysis | 11 |
| hydroxylamines | 14 |
| HypC | 199 |
| |
| image plate | 115, 248 |
| imaging | 166, 178, 219, 229, 230, 243, 245, 247, 249, 251 |
| impurity effect | 145 |
| in situ | 53 |
| in situ crystallography | 28 |
| in situ QXAFS | 72 |
| in situ SAXS | 147 |
| in situ XAFS | 107 |
| in-depth profile | 61 |
| in-situ observation | 182 |
| incommensurate structure | 148 |
| InGaN | 129 |
| injection-molded | 135 |
| inner-core photoionization | 1 |
| instrumentation | 55, 78, 241, 246 |
| interaction | 191 |
| interface | 65, 66, 78 |
| interference fringes | 168 |
| intermediate-range order | 166 |
| ion association | 12 |
| ion irradiation | 111 |
| ion selectivity | 201 |
| ionic liquid | 13, 17, 34, 113, 120 |
| iron (Fe) | 7, 38, 238 |
| iron carbide | 171 |
| iron core | 207 |
| iron silicide | 74 |
| iron superconductor | 80 |
| iron-pnictides | 82 |
| isomerization | 47 |
| iteration | 247 |
| |
| Jahn-Teller effect | 37, 96 |
| |
| kinesin | 214 |
| kinetics | 190, 190 |
| krypton (Kr) | 3 |
| |
| L-sorbose reductase | 216 |
| La0.7Ca0.3MnO3 | 65 |
| La1-xSrxMnO3 thin film | 63 |
| lamellar | 15, 123, 139 |
| lanthanide | 189 |
| lanthanum (La) | 10 |
| lattice comparator | 158 |
| lattice defect | 106 |
| lattice distortion | 37 |
| lattice instability | 93 |
| lattice strain | 56, 180 |
| Laue method | 94 |
| Laue photograph | 248 |
| layered perovskite | 87 |
| lead (Pb) | 100 |
| lead-free piezoelectric | 150 |
| lectin | 212 |
| LED | 129 |
| Li-ion battery | 43, 157 |
| Li2TiO3 | 126 |
| light-harvesting | 208 |
| lipid bilayer | 224 |
| liquid | 173, 179, 185, 188 |
| liquid crystal | 110, 119, 128 |
| liquid phase | 9 |
| liquid-liquid phase transition | 187 |
| lithography | 233 |
| LNKN | 150 |
| LSCO | 81, 94 |
| LSMO | 63, 66, 101, 145 |
| lysine biosynthesis | 203, 204 |
| lysozyme | 164 |
| |
| magma | 181 |
| magnetic anisotropy | 121 |
| magnetic form factor | 85, 92 |
| magnetic moment | 92 |
| magnetic nanoparticle | 121 |
| magnetic orientation | 123 |
| magnetic property | 116, 133 |
| magnetic thin films | 73 |
| magnetic transition | 171 |
| magnetism | 104 |
| malaria | 196 |
| mammalian expression | 197 |
| mapping | 158 |
| mechanochemical | 100 |
| medical application | 229 |
| melting | 103 |
| mercury (Hg) | 4 |
| mesoporous silica | 14, 159 |
| metal-insulator transition (MIT) | 148 |
| metal-support interaction | 57 |
| metallo-fullerene | 95 |
| methane | 44, 149 |
| methanol | 40 |
| methylthioadenosine | 223 |
| Mg-bearing minerals | 237 |
| microbeam | 135, 210, 228 |
| Micrococcus luteus | 161 |
| microdomain | 123, 138 |
| microphase separation | 110 |
| microreactor | 236 |
| microscopy | 247 |
| mirage peak | 168 |
| mixed crystal | 166 |
| mixed valence | 146 |
| mlutiple scattering theory | 221 |
| Mn-Zn ferrite | 144 |
| Mn12 cluster | 41 |
| MnO2 | 157 |
| molecular chaperone | 217 |
| molecular imaging | 230 |
| molecular orientation | 170 |
| molecular-magnet | 7 |
| molten salt reactor | 5, 29 |
| molybdenum (Mo) | 73, 234 |
| momentum imaging | 1 |
| moon | 181 |
| morphology transition | 123 |
| multiferroic | 94 |
| multiple Bragg-Laue case | 168 |
| multiply excited | 2 |
| MURR1 | 222 |
| |
| n-alkane | 69 |
| N-linked glycoprotein | 211 |
| nanocluster | 42, 59 |
| nanocrystal | 48, 236 |
| nanocylinder | 139 |
| nanoparticle | 9, 46, 50, 105, 117, 121, 141, 144 |
| nanoscale | 49, 60 |
| nanowire | 118 |
| NC-AFM | 60 |
| negative thermal expansion | 174, 175 |
| neodymium (Nd) | 38 |
| new compound | 189 |
| NEXAFS | 36, 58, 69, 76, 97 |
| Ni colloid | 152 |
| Ni complex | 51 |
| nickel (Ni) | 37, 91 |
| nickel phosphide (Ni2P) | 72 |
| nigerose | 211 |
| NiMo/Al2O3 | 235 |
| nitride | 189 |
| nitro compounds | 14 |
| nitrogen (N) | 54 |
| normal human fibroblasts | 210 |
| nuclear fuels | 111 |
| nucleation and grhigh-pressure transformation | 190 |
| nucleation and growth | 190 |
| nucleosidase | 223 |
| nucleosome | 202 |
| |
| oblique deposition | 125 |
| octupole | 98 |
| oligomeric structure | 200 |
| optical constant | 233 |
| orbital form factor | 85 |
| orbital moment | 92 |
| orbital ordering | 96, 127, 145 |
| orbital stripe | 101 |
| organic conductor | 104, 148 |
| organic ferroelectrics | 102 |
| organic material | 250 |
| organic metal complex | 183 |
| organogel | 142 |
| organosilica | 108 |
| orientation | 58 |
| orthorhombic | 164 |
| oxidation | 31, 32, 219 |
| oxidative dehydrogenation | 109 |
| oxide | 66, 239 |
| oxide semiconductor | 90 |
| oxidoreductase | 163 |
| oxygen reduction reaction | 153 |
| oxynitride | 146 |
| |
| palladium (Pd) | 26, 27, 37, 50, 53 |
| palladium complex | 183 |
| particle statistics | 244 |
| Pauling's bond length | 166 |
| PbSrTiO3 | 141 |
| Pd/C | 109 |
| PDDA | 50 |
| peapod | 95 |
| PEEM | 249 |
| perovskite | 146, 150, 155 |
| perovskite-type oxide | 132 |
| peroxiredoxin | 163 |
| phage display | 191 |
| pharmaceutical | 23 |
| phase | 252 |
| phase change | 162 |
| phase contrast | 242, 243 |
| phase determination | 167 |
| phase transition | 102, 126, 128, 175, 176, 185, 188 |
| photo-irradiation | 50 |
| photoalignment | 110 |
| photocatalyst | 107, 143 |
| photoelectron diffraction (PED) | 59 |
| photoemission spectroscopy (PES) | 24, 54, 55, 62, 63, 64, 65, 78, 88, 89, 90, 91, 95 |
| photomask | 233 |
| photon pair | 2 |
| photon stimulated desorption | 240 |
| photoreduction | 113, 120 |
| photosynthesis | 208 |
| phytoremediation | 225 |
| picosecond time-resolved XPS | 246 |
| plant | 214, 223 |
| plasma CVD | 36 |
| platinum (Pt) | 14, 37, 46, 75 |
| platinum complex | 20 |
| platinum-carbon | 33 |
| PLLA | 124 |
| polar-angle-resolved time-of-flight ion mass spectrometer | 240 |
| polarization | 58 |
| polaron | 93 |
| poly-capillary lens | 249 |
| polyamorphism | 174 |
| polyatomic molecule | 1 |
| polymer | 20, 58, 124, 125, 125, 147 |
| polymer electrolyte fuel cell (PEFC) | 33, 77, 238 |
| polypropylene | 135 |
| pore | 28 |
| porphyrin | 12 |
| powder diffractometry | 244 |
| powder X-ray diffraction | 23, 99, 172, 183 |
| power-electronics inverter | 160 |
| precursor dependency | 68 |
| press drawing | 124 |
| pressure scale | 172 |
| pressure-induced amorphization | 174 |
| processing α-glucosidase | 211 |
| projection | 247 |
| proteasome | 169 |
| protein | 221, 222 |
| protein crystal | 170 |
| protein crystallography | 161, 163, 165, 169, 191, 192, 196, 197, 198, 199, 200, 201, 202, 203, 204, 208, 209, 211, 212, 213, 215, 216, 217, 218, 220, 223, 226 |
| protein disorder | 205 |
| protein expression | 220 |
| proton conductor | 132 |
| proton transfer | 102 |
| Pt L3-edge XAFS | 33 |
| Pt LIII-edge EXAFS | 108 |
| PTRF-XAFS | 42 |
| pulsed laser deposition (PLD) | 132, 133 |
| pyrite | 18 |
| |
| quality | 170 |
| |
| rabbit elongation factor eEF1-A | 205 |
| radiography | 181 |
| raft | 224 |
| rail | 115 |
| rare earth | 151 |
| Rashba effect | 70, 83 |
| rattling | 151 |
| reaction intermediate | 192 |
| reaction mechanism | 165 |
| RedOx reaction | 53 |
| reduction behavior of copper ions | 39 |
| regeneration | 234 |
| remineralization | 228 |
| ReRAM | 62 |
| residual stress | 115 |
| resistance | 65 |
| resonant X-ray diffraction | 98 |
| resonant X-ray scattering | 127, 145, 167 |
| rheo-SAXS | 15 |
| rheology | 180 |
| rhodium (Rh) | 9, 46, 143, 149 |
| rhodium (Rh) cluster | 68 |
| rhombohedral distortion | 162 |
| road dust | 52 |
| rocking curve | 167, 170 |
| RoHS directive | 45 |
| RuO2 | 156 |
| ruthenium (Ru) | 25, 31, 32 |
| ruthenium (Ru) cocatalyst | 107 |
| ruthenium (Ru) complex | 47 |
| rutile | 156, 176 |
| |
| S K-edge XANES | 16 |
| S100 protein | 195 |
| salt-tolerant | 161 |
| satellite | 91 |
| SAXS | 15, 34, 40, 103, 110, 119, 120, 123, 124, 125, 128, 137, 138, 139, 140, 142, 147, 193, 194, 195, 205, 206, 207, 214, 227 |
| scandium tungstate | 175 |
| scanning photoelectron microscopy (SPEM) | 78 |
| Schottky barrier height | 66 |
| SDPD | 23 |
| segregation | 63 |
| self-assembly | 26, 27, 28, 59, 69, 142, 159 |
| SeMet | 220 |
| semiconductor | 70, 129, 233 |
| sewer sediment | 52 |
| SHARP | 198 |
| shear | 15 |
| shear plane | 156 |
| sheet beam | 230 |
| shell | 121 |
| Si surface | 55 |
| SiC | 106 |
| silica-coated metal catalyst | 108 |
| silicate melt | 186 |
| silicon (Si) | 59, 83, 158 |
| silicon carbide (SiC) | 160 |
| silver (Ag) | 49, 76, 83 |
| silver (Ag) particle | 113, 120 |
| single crystal diffraction | 162 |
| sink/float method | 178 |
| site distribution | 116 |
| site structure | 16 |
| size control | 144 |
| size effect | 141 |
| skutterudite | 151, 182, 184 |
| Sm2Ti2O7 | 87 |
| small angle scattering | 242 |
| snow core | 21 |
| sodium lactate | 109 |
| sodium pyruvate | 109 |
| soft X-ray emission spectroscopy (SXES) | 84, 155 |
| soft X-ray fluorescence spectroscopy (SXFS) | 71 |
| sol-gel transition | 142 |
| solid phase reaction | 71 |
| solid state reaction | 28 |
| solubility | 154 |
| solution structure | 195 |
| solvent extraction | 8 |
| speciation | 52 |
| spectromicroscopy | 219 |
| spin | 83 |
| spin cast | 137 |
| spin crossover | 51 |
| spin form factor | 85 |
| spin moment | 92 |
| spin polarized photoemission | 241 |
| spin transition | 171 |
| spin-resolved photoemission | 91 |
| spinodal decomposition | 147 |
| src SH3 | 194 |
| SrVO3 | 88, 89 |
| SrVO3 | |
| SrZrO3 | 132 |
| steam reforming reaction | 134 |
| strength | 115 |
| stress | 180 |
| structural change | 173 |
| structural modulation | 148 |
| structural transformation | 20 |
| substrate specificity | 203 |
| sulfur (S) | 21, 219 |
| sulfur-doped titanium oxide | 16 |
| superconductivity | 93, 184 |
| superconductor | 104 |
| supercritical fluid | 40, 113, 120 |
| supercritical water | 25 |
| superlattice | 104 |
| supported metal catalyst | 25 |
| surface | 31, 32, 57, 75, 78, 239 |
| surface effect | 141 |
| surface electronic states | 63 |
| surfactants | 15 |
| switching | 65 |
| synthesis | 182 |
| |
| Talbot interferometer | 242, 243 |
| tellurium (Te) | 131 |
| terbium fluoride (TbF3) | 5 |
| thermal expansion | 126 |
| thermodynamics | 191 |
| thermophilic F1-ATPase | 198 |
| thermoreversible | 34 |
| Thermus thermophilus | 203 |
| thickness dependent | 89 |
| thin film | 63, 67, 73, 74, 76, 87, 88, 89, 90, 112, 114, 116, 132, 136, 137, 250 |
| thorium fluoride (ThF4) | 29 |
| three-dimensional electronic strcuture | 82 |
| threshold photoelectron | 3 |
| Ti K-edge EXAFS | 16 |
| time-resolved | 53, 190, 246 |
| tin tetraiodide | 187 |
| TiO2 | 24, 57, 84, 86, 90 |
| TiO2(110) | 42 |
| titanium (Ti) | 239 |
| titanium oxide | 114 |
| tomography | 243 |
| toxin | 212 |
| TPRF-XAFS | 57 |
| transparent | 124 |
| transparent conductive film | 114 |
| trifluoroethanol | 194 |
| trigonal | 131 |
| triple phase boundary | 33 |
| tris | 161 |
| tuberculosis | 213 |
| tunnel structure | 157 |
| |
| ubiquitin | 169 |
| uranium (U) | 17 |
| |
| vacuum deposition | 125 |
| valence band | 79 |
| vanadium oxide | 127 |
| vapochromism | 30, 51 |
| viscosity | 181 |
| visibility | 242 |
| visible light | 16 |
| VLEED-type spin polarimeter | 91, 241 |
| voids | 140 |
| |
| water molecule | 2 |
| water splitting | 143 |
| WAXS | 135 |
| white light | 243 |
| wide-angle X-ray diffraction (WAXD) | 224 |
| |
| X-ray absorption image | 178, 179 |
| X-ray absorption spectroscopy (XAS) | 38, 74, 77, 86, 153, 155, 238 |
| X-ray differential phase contrast imaging | 251 |
| X-ray diffraction (XRD) | 23, 26, 27, 28, 99, 101, 102, 104, 105, 115, 117, 121, 126, 148, 159, 172, 177, 183, 184, 185, 186, 187, 188, 190 |
| X-ray diffuse scattering | 170 |
| X-ray fluorescence (XRF) | 228 |
| X-ray fluorescence (XRF) analysis | 160 |
| X-ray fluorescence holography | 122, 166 |
| X-ray fringes | 168 |
| X-ray linear dichroism (XLD) | 96 |
| X-ray magnetic diffraction | 85, 92 |
| X-ray Raman scattering | 84 |
| X-ray topography | 106, 160, 164 |
| X-ray waveguide | 250 |
| XAFS | 6, 8, 10, 19, 22, 25, 31, 32, 35, 41, 44, 47, 49, 50, 75, 100, 118, 134, 150, 152, 154, 157, 234, 245 |
| XANAM | 60 |
| XANES | 8, 12, 16, 18, 21, 22, 33, 39, 41, 43, 44, 45, 47, 50, 52, 68, 75, 100, 109, 114, 118, 143, 144, 146, 152, 157, 219, 221, 222, 225, 231, 232, 234, 237 |
| xanthine | 163 |
| XMCD | 73, 130, 136 |
| XPS | 36, 58, 74, 87, 111, 112, 133 |
| |
| YbFe2O4 | 112 |
| yeast | 220 |
| |
| zinc (Zn) | 52, 195, 225, 228 |
| zirconia | 99 |
| zirconium fluoride (ZrF4) | 29 |
| ZnO | 67, 136 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2008
Copyright © 2009 by High Energy Accelerator Research Organization (KEK)