|
Photon Factory Activity Report 2009 Part B: Users' Report Keyword Index |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
| Keyword | Page |
| |
| 12-hydrostearic acis (12-HAS) | 124 |
| |
| 3d electron | 179 |
| |
| α-aminoadipate aminotransferase | 247 |
| absorbing crystal | 172 |
| ac calorimetry | 164 |
| accumulation layer | 52 |
| acrinol | 35 |
| actinide | 146 |
| acyldepsipeptide | 227 |
| AdoHcy hydrolase | 210 |
| ADPs | 184 |
| adsorption | 26, 59, 64, 151 |
| Aeropyrum pernix | 254 |
| aggregates | 44 |
| AgI doped system | 136 |
| alcohol reduction | 21 |
| aldehyde oxidation | 11 |
| alginate | 255 |
| alkene epoxidation | 11 |
| allophane | 26 |
| alloy | 17, 19, 53, 61, 78, 79, 131, 189, 191 |
| alminium (Al) | 87 |
| AlPO4 | 31 |
| Alq3 | 47 |
| aminoacylation reaction | 232 |
| amorphous alloy | 131 |
| amorphous polymorphs | 199 |
| anatase TiO2 | 83, 99 |
| angiogenesis | 258 |
| angiography | 257, 258, 259, 260 |
| annealing | 164 |
| anomalous X-ray scattering | 132 |
| antibiotics | 227 |
| antibody | 202, 211 |
| anticodon | 232 |
| antigorite | 162 |
| antimony (Sb) | 149 |
| arginyl-tRNA synthetase | 232 |
| ARPES | 43, 46, 52, 55, 57, 65, 80, 82, 85, 90, 91, 92, 93, 98, 99 |
| arsenate | 9 |
| arsenic (As) | 9, 189, 215 |
| arteriogenesis | 258 |
| asparagine deamidation | 219 |
| aspartate kinase | 248 |
| asymmetric hydrogenation | 10 |
| atmosphere | 72 |
| atomic energy | 4 |
| attenuation length | 41 |
| Au catalyst | 42 |
| Au cluster | 63 |
| Au(111) | 58 |
| auto-ionization | 140 |
| available iodine | 27 |
| |
| β/α barrel | 209 |
| Ba-Ferrite | 171 |
| Bacillus pallidus | 243 |
| Bacillus subtilis | 231 |
| BaCoTiFe10O19 | 171 |
| bacterium | 37 |
| BaFBr | 274 |
| band alingment | 51 |
| band diagram | 47 |
| band dispersion | 85 |
| BaPrO3 | 140 |
| BaRu4As12 | 198 |
| basidiomycete | 209 |
| BCN | 13 |
| bent crystal | 176 |
| bentonite material | 169 |
| Bi2Se3 | 70 |
| bidentate ligand | 28 |
| bifidobacteria | 250 |
| bilayer | 121, 208 |
| bimetallic nanoparticles | 21 |
| binding site | 10 |
| biochemical substances | 235 |
| biofilm | 174 |
| biogenic Mn oxide | 37 |
| biological safety of nanomaterials | 256 |
| biomaterials | 155, 186 |
| biosorption | 155 |
| biotic reduction | 207 |
| bismuth (Bi) | 126, 154 |
| block copolymer | 114, 139 |
| block copolymer solution | 161 |
| blur-correction | 269 |
| boron nitride (BN) | 59 |
| botulinum toxin | 180 |
| bulk metallic glass | 132 |
| bulk modulus | 198 |
| bulk-hetero junction OPD | 272 |
| bystander effect | 217, 214, 253 |
| |
| C Kα | 84 |
| C-terminal tail | 205 |
| calcium (Ca) | 23, 85, 169 |
| calcium fluoride (CaF2) | 25, 29 |
| canting angle | 171 |
| carbohydrate binding | 223 |
| carbon (C) | 12, 264 |
| carbon alloy catalyst (CAC) | 137, 264 |
| carbon dioxide (CO2) | 30 |
| carbon fiber | 119 |
| carbon nanotube | 88, 160 |
| cargo receptor | 224 |
| catalyst | 8, 10, 11, 12, 16, 19, 21, 22, 31, 33, 38, 42, 54, 68, 135, 144 |
| catalytic mechanism | 243 |
| cathode | 137 |
| cathode catalyst | 68 |
| CdSe | 127 |
| cell death | 214 |
| cellobiohydrolase | 209 |
| cellulase | 209 |
| cementitious material | 169 |
| CeRh3B2 | 86 |
| chalcogen | 134 |
| chalcogenide glass | 122, 123 |
| charge and orbital order | 103, 111, 112 |
| charge disproportionation | 130 |
| chemical forms | 256 |
| chemical shift | 67, 83 |
| chemical short-range order (CSRO) | 132 |
| chemical states | 51 |
| chitobiose | 251 |
| chlorination | 262 |
| chlorine (Cl) | 262 |
| cholesterol depletion | 230 |
| chromium (Cr) | 155, 229 |
| cigarrette smoking | 260 |
| cis-editing | 254 |
| Clostridium botulinum | 180 |
| ClpP | 227 |
| CO oxidation | 71 |
| Co2MnGe | 101 |
| Co2MnSi | 101 |
| coagulation factor | 224 |
| cobalt (Co) | 17, 37, 122 |
| coenzyme B12 | 221 |
| coincidence spectroscopy | 40 |
| cold electron collision | 1 |
| cold exposure | 259 |
| colossal magnetoresistance | 112 |
| COMMD1 | 225 |
| complex | 14, 24 |
| compressiobility | 162 |
| compression | 119 |
| compression curve | 196 |
| Compton scattering | 268 |
| conduction mechanism | 136 |
| confined crystallization | 115, 116, 117 |
| confinement | 23 |
| confromational change | 234 |
| coordination | 3, 24, 242 |
| coordination complex | 28 |
| coordination network | 7 |
| coordination structure | 146 |
| copper (Cu) | 14, 39, 151 |
| coprecipitation | 9 |
| Coprinopsis cinerea | 209 |
| core/shell | 125 |
| coronary angiography | 258 |
| coronary spasm | 257 |
| Corynebacterium glutamicum | 248 |
| CoSb3 | 194, 196 |
| CotB2 | 212 |
| covalent adduct | 220 |
| CRM1 | 236 |
| crystal orientation | 115, 116, 117 |
| crystal structure | 14, 94, 103, 181 |
| crystal structure factor | 172 |
| crystal truncation rod (CTR) | 53, 77 |
| crystalline-crystalline diblock copolymer | 115, 116 |
| crystallization | 106 |
| CT excitation | 100 |
| Cu precipitation | 104 |
| Cu3Au type alloy | 78 |
| CuV2S4 | 89 |
| cyanide treatment | 42 |
| cyclodextrin | 230 |
| cycloocta-9-en-7-ol | 212 |
| cyclooctatin biosynthesis | 212 |
| cysteic acid | 222 |
| cytochrome | 242, 245 |
| |
| Δ12-prostaglandin J2 | 220 |
| D-aldohexose dehydrogenase (AldT) | 205 |
| D-arabinose isomerase | 243 |
| D-aspartate | 173 |
| D-aspartate oxidase | 173 |
| d-d excitation | 100 |
| D-glucose dehydrogenase | 205 |
| D-mannose | 205 |
| Dactylis glomerata | 237 |
| debye-temperature | 178 |
| defect | 183 |
| deformation experiment | 187 |
| dehydration | 35 |
| density | 188 |
| depth profiling | 133 |
| depth-resolved XMCD | 64 |
| design | 233 |
| detector | 76 |
| deubiquitinating enzymes | 177 |
| deuterium (D) | 59 |
| diagnostic | 261 |
| diamond anvil cell | 193 |
| diamond-like carbon | 66 |
| diblock copolymer | 105 |
| diluted magnetic semiconductor | 118 |
| dilution effect | 102 |
| dimyristoylphosphatidylglycerol | 208 |
| dislocation | 153, 183 |
| dispersive NEXAFS | 71 |
| distribution | 229 |
| disulfide bond | 216 |
| diterpene cyclase | 212 |
| DNA | 69 |
| DNA binding | 174 |
| domain | 113 |
| DPPG/cholesterol bilayer | 230 |
| drug design | 241 |
| dust | 149 |
| dydrate melt | 146 |
| dynamical diffraction | 176 |
| dynamics | 184 |
| |
| E2 | 206 |
| earth and planetary interior | 188 |
| earth's core | 197 |
| effect of additional metal ion | 16 |
| effect of phosphate on iron loading | 249 |
| effective mas | 43 |
| electric double layer | 77 |
| electrochemistry | 34 |
| electrodeposition | 58 |
| electrolyte solution | 23 |
| electron density | 179, 181 |
| electron irradiation | 104 |
| electron transfer | 69 |
| electronic structure | 92, 107, 140 |
| electrospinning | 157 |
| elongation factor | 239 |
| endo-α-N-acetylgalactosaminidase | 250 |
| endoplasmic reticulum associated degradation (ERAD) | 251 |
| energy response | 273, 274 |
| energy tunable positronium beam | 2 |
| enhanceosome | 252 |
| Entamoeba histolytica | 244 |
| environmental pollution | 215 |
| epidermal growth factor receptor | 202 |
| epitaxial film | 148 |
| epitaxial strain effect | 112 |
| epitaxial thin film | 109 |
| equation of state | 162 |
| erbium (Er) | 24, 123 |
| ERGIC-53 | 224 |
| ErVO3 | 142 |
| ethanolamine ammonia-lyase | 221 |
| europium (Eu) | 128 |
| EXAFS | 19, 25, 29, 33, 104, 109, 122, 123, 126, 127, 135, 136, 144, 146, 150, 152, 155, 225 |
| expansivity | 162 |
| exportin | 236 |
| |
| F-box protein | 251 |
| Fddd | 105 |
| Fe3C melt | 188 |
| FeCu | 104 |
| ferrihydrite | 9 |
| ferrimagnet | 102 |
| ferritin | 226, 249 |
| ferromagnetic semiconductor | 165 |
| ferroxidase center | 226 |
| FeS melt | 188 |
| FeV2O4 | 120 |
| film | 56 |
| flat panel detector | 273 |
| fluorescence | 76 |
| fly ash | 262 |
| folding | 5, 233 |
| force constant | 152 |
| fourier method | 170 |
| fresnel fringe | 269 |
| FT-IR | 8 |
| fuel | 30 |
| fuel cell | 12, 137 |
| fullerene | 145 |
| |
| γ-ray burst | 267 |
| Ga2O3 | 118 |
| GaAs | 172 |
| galacto-N-biose | 250 |
| galectin | 223 |
| gallium oxide | 61 |
| garnet | 178 |
| gas pressure sintering | 128 |
| gate oxide | 67 |
| gel | 255 |
| gelator | 124 |
| gene regulation | 204 |
| geological disposal | 169 |
| geranylgeranyl diphosphate | 212 |
| germanium (Ge) | 57, 65 |
| GISAXS | 114 |
| GIXS (grazing-incidence X-ray scattering) | 266 |
| global warming | 30 |
| glutamate dehydrogenase | 248 |
| glutamate receptor | 241 |
| glutaminase | 231 |
| glycine polymorphs | 184 |
| glycoside hydrolase family 6 | 209 |
| gold (Au) | 42, 58, 63, 65 |
| gold nanorods | 256 |
| graphene | 108, 147 |
| graphite | 85 |
| graphitization | 66 |
| guanosine monophosphate | 69 |
| Gyroid | 105 |
| |
| hair | 222 |
| hardness | 104 |
| heat capacity | 164 |
| heat shock protein 40 | 219 |
| Helicobacter pylori | 226 |
| helix | 5 |
| heme | 242 |
| hemiaminal | 7 |
| hetero junction OPD | 272 |
| Heusler alloy | 101 |
| high pressure | 94, 162, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201 |
| high-density amorphous phase | 200 |
| high-dose X-ray irradiation | 235 |
| high-k dielectrics | 49, 51 |
| high-k gate stack | 46 |
| histidine | 220 |
| histone demethylase | 246 |
| hole conductivity | 140 |
| homeodomain | 204 |
| homocitrate synthase | 247 |
| homopolyer | 117 |
| host-guest | 5 |
| Hsp40 | 218 |
| Hsp70 | 218 |
| human serum albumin | 220 |
| humanization | 202 |
| humic acid | 26 |
| hydration | 213 |
| hydrodesulfurization (HDS) | 8, 22, 38 |
| hydrogen (H) | 52, 66 |
| hydrogen bond | 185 |
| hydrogen position | 192 |
| hydrotalcite | 265 |
| hydroxyapatite | 186 |
| |
| imaging | 4, 163, 188, 229, 257, 259, 261, 263, 269, 270 |
| imaging plate (IP) | 273 |
| immobilization | 73 |
| impurity band | 134 |
| in situ | 38 |
| in situ crystallography | 7 |
| in situ XAFS | 18 |
| in-depth profile | 46 |
| in-plane XRD | 108 |
| in-situ measurement | 131 |
| in-situ observation | 194 |
| in-situ SAXS | 129 |
| incommensurate | 113 |
| instrumentation | 76 |
| intercalation | 85 |
| intercellular lectin | 224 |
| interface | 40, 45, 47 |
| interface dipole | 50 |
| interfacial reaction | 49 |
| interference | 87 |
| interferometer | 270 |
| intermediate | 206 |
| iodine (I) | 27, 237 |
| ion hydration | 23 |
| ionic conducting glass | 136 |
| ionic liquid | 150, 158 |
| IR absorption | 134 |
| iron (Fe) | 15, 17, 197, 262 |
| iron carbonate | 179 |
| iron core | 249 |
| iron pnictide | 93 |
| iron silicide | 133 |
| iron-based superconductor | 90, 92, 93, 94, 193 |
| isoaspartate | 219 |
| isoform | 241 |
| isoprene biosynthesis | 175 |
| isoprenyl pyrophosphate synthase | 175 |
| isotope | 15 |
| |
| Jahn-Teller distortion | 14, 102 |
| |
| killing | 217 |
| kinesin | 234 |
| |
| L-cysteine | 72 |
| lacto-N-biose I | 250 |
| LaFeAsO1-xFx | 193 |
| LaFePO | 193 |
| lamellar | 32, 115, 116, 151 |
| lanthanide (Ln) | 3, 15, 24, 25 |
| lanthanoid sesquioxides | 195 |
| lattice constant | 154 |
| lattice distortion | 14, 109 |
| lattice strain | 187, 263 |
| LDH | 30 |
| lead (Pb) | 57 |
| Li-ion battery | 34, 141 |
| ligand | 242 |
| light-harvesting | 245 |
| LiNiO2 | 166 |
| liquid arsenic | 189 |
| liquid IV-VI alloy | 189, 191 |
| liquid phase | 33 |
| lithium fluoride (LiF) | 25, 29 |
| Ln | 15 |
| local electronic structure | 40 |
| local structure | 163 |
| lysine biosynthesis | 247 |
| lysozyme crystal | 153 |
| |
| magnetic edge-state | 147 |
| magnetic electron-density distribution | 170 |
| magnetic form factor | 79, 86 |
| magnetic helices | 171 |
| magnetic hysteresis | 268 |
| magnetic metals | 145 |
| magnetic ordering | 95 |
| magnetic property | 148 |
| magnetic resonant experiment | 170 |
| magnetic thin films | 64 |
| magnetic transition | 197 |
| magnetite | 170 |
| magneto-dielectric material | 148 |
| magnetoresistance | 143 |
| manganite | 103, 111, 112 |
| manicipal solid waste | 149 |
| MCFD2 | 224 |
| mechanical properties | 119 |
| medical imaging | 257, 259, 261 |
| medicine | 27 |
| mental retardation | 246 |
| Mentha piperita | 175 |
| mesoporous Cr and Ti mixed oxides | 36 |
| metal gate | 49 |
| metal-insulator transition | 100, 156 |
| metal-storing | 226 |
| methane oxidation | 166 |
| methionine γ-lyase | 244 |
| Mg-bearing mineral | 265 |
| micro-angiography | 257, 259, 260 |
| micro-fibers | 157 |
| microbeam | 110, 214, 217, 253 |
| microdomain structure | 117 |
| microemulsions | 158 |
| microfluidic cell | 127 |
| microphase-separated structures | 139 |
| microscope | 269 |
| migration | 217 |
| mirage fringes | 176 |
| mirage peak | 176 |
| mixed conductor | 181 |
| mixed-valent chromium oxide | 156 |
| Mn12 clusters | 18 |
| MnO2 | 141 |
| Mo K-edge EXAFS | 38 |
| molecular chaperone | 218 |
| molecularl imprinting | 10 |
| molten salt | 25, 29 |
| motor protein | 234 |
| MTF | 261 |
| multiferroic | 159 |
| multiple Bragg-Laue diffraction | 176 |
| multiple drug resistance | 174 |
| multiple scattering theory | 225 |
| municipal solid waste incinerator | 262 |
| mutant | 232 |
| Mycobacterium tuberculosis | 228 |
| myocardial ischemia | 258 |
| myosin crossbridge | 203 |
| |
| NaCl | 231 |
| nano alumina | 22 |
| nano-structure formation | 161 |
| nanocluster | 135 |
| nanocrystal | 127, 159 |
| nanocrystalline | 154 |
| nanoparticle | 19, 21, 33, 126, 152, 167 |
| nanoribbon | 147 |
| nanosheet | 108 |
| negative thermal expansion | 199 |
| NES | 236 |
| neutrophil-activating protein | 226 |
| NEXAFS | 13, 59, 71, 72, 73, 74, 75, 147 |
| Ni2P | 8 |
| Ni3S | 190 |
| nickel (Ni) | 17, 64, 135 |
| nitric oxide | 214, 260 |
| noble metal | 31 |
| non-local interaction | 216 |
| normal human cells | 253 |
| normal mode analysis | 184 |
| nuclear fuel | 4 |
| nucleotide | 228 |
| |
| oil/water interface | 44 |
| operando | 8 |
| orbital degree of freedom | 120 |
| orbital moment | 79, 86 |
| orbital order | 102, 142 |
| order disorder phase transition | 78 |
| order parameter | 78 |
| organic | 47 |
| organic device | 168 |
| organic photodiode | 272 |
| organic semiconductor | 168, 272 |
| organic single crystal | 168 |
| organic single-crystal transistor | 168 |
| organic superconductor | 130 |
| organic transistor | 168 |
| ORR | 264 |
| osmotic stress | 213 |
| outer-sphere | 265 |
| oxidation | 53, 60 |
| oxidative damage | 222 |
| oxidative dehydrogenation | 144 |
| oxide | 47, 82, 91 |
| oxide heterointerface | 50 |
| oxide surface | 11, 73 |
| oxygen reduction reaction | 137 |
| |
| palladium (Pd) | 6, 28 |
| partial oxidation | 42 |
| particle | 149 |
| particle statistics | 271 |
| Pd-Pd bond | 144 |
| Pd/C catalyst | 144 |
| Pd3Co | 79 |
| PDMS | 129 |
| PEFC | 264 |
| Peierls distortion | 189 |
| peptide | 5 |
| perfect half-metals | 101 |
| perovskite | 140 |
| perovskite oxide | 148 |
| perovskite-type oxides | 107, 109 |
| pharmaceutical | 35 |
| phase behaviour | 230 |
| phase determination | 172 |
| phase transition | 78, 89, 120, 191, 195, 208 |
| phase-contrast | 270 |
| phenathoroline amide (PTA) | 24 |
| PHF8 | 246 |
| phospholipid | 208 |
| phosphor | 128 |
| phosphorylase | 228, 250 |
| photocatalysis | 30 |
| photocatalyst | 61, 125 |
| photodetachment | 2 |
| photoelectron | 41 |
| photoelectron emission microscopy (PEEM) | 62, 74 |
| photoelectron source | 1 |
| photoemission spectroscopy (PES) | 45, 47, 48, 49, 50, 51, 66, 67, 68, 81, 82, 83, 87, 88, 91, 96, 97, 140, 148, 166 |
| photoreduction | 150, 158 |
| photostimulated luminescence | 274 |
| photosynthesis | 245 |
| phytoremediation | 215, 229 |
| picene | 84 |
| planetary core | 190 |
| plant | 215, 237 |
| plasma CVD | 13 |
| plasmon | 87 |
| platinum (Pt) | 12, 21, 71 |
| polarimeter | 267 |
| polarization | 75, 267 |
| poly (methyl methacrylates) | 167 |
| poly (L-lactic acid) | 106 |
| poly-capillary lens | 62 |
| polyethylene | 138 |
| polyguanylic acid | 69 |
| polyhedral oligomeric silsesquioxane (POSS) | 138 |
| polymer | 105, 106, 110, 114, 115, 116, 117, 129, 138, 139, 157, 161, 164, 167 |
| polymer electrolyte | 12 |
| polymer electrolyte fuel cells | 68 |
| polymorphism | 35 |
| polyoxometalate | 185 |
| polypropylene | 110 |
| polysilane | 74, 75 |
| polystyrene-block-polyethylenebutylene-block-polystyrene triblock copolymer | 157 |
| pore | 7 |
| porous materials | 23 |
| positronium negative ions | 2 |
| potential profile | 50 |
| povidone iodine | 27 |
| powder diffraction | 35 |
| powder X-ray diffraction | 102, 120, 159, 162, 271 |
| Pr2NiO4 | 181 |
| prad | 270 |
| precursor | 19, 54 |
| prenyltransferase | 175 |
| preparation | 19 |
| press-drawing | 106 |
| pressure-induced amorphization | 199, 200 |
| profile fitting | 195 |
| propylene | 42 |
| prostaglandin | 220 |
| protease | 227 |
| proteasome | 251 |
| protein | 213 |
| protein crystallography | 173, 174, 175, 177, 180, 182, 202, 204, 205, 206, 209, 210, 211, 212, 218, 219, 220, 221, 223, 224, 226, 227, 228, 231, 232, 233, 236, 241, 242, 243, 244, 245, 246, 247, 248, 250, 251, 252, 254 |
| protein engineering | 211 |
| protein fluctuation | 240 |
| protein folding | 216 |
| protein G | 211 |
| proton conductor | 107 |
| Pt ultra-thin layers | 58 |
| Pt-Co alloy | 68 |
| Pt-loaded MCM-41 | 16 |
| Pteris vittata | 215 |
| PTRF-XAFS | 63 |
| pulsed laser deposition (PLD) | 66, 109, 118 |
| pyridinedicarboxyamide (PDA) | 3 |
| Pyrococcus horikoshii | 232 |
| |
| quantum size effect | 56 |
| quantum-well state | 56 |
| quartz | 113 |
| |
| radiobiology | 214, 217, 235, 253 |
| RanBP | 236 |
| rare earth | 86 |
| rare sugars | 243 |
| rare-earth | 123 |
| Rashba effect | 56, 57, 70 |
| reaction induced phase separation | 129 |
| reaction intermediate | 173 |
| reaction mechanism | 8 |
| reactive intermediate | 7 |
| receptor binding domain | 180 |
| rechargeable batteries | 18 |
| redox | 45 |
| regeneration | 38 |
| relaxation | 132 |
| replica | 12 |
| repressor | 174 |
| ReRAM | 48 |
| residual order | 53 |
| resistive switching | 45 |
| resonance surface X-ray scattering | 58 |
| resonant Auger spectroscopy | 69 |
| resonant soft X-ray emission | 89 |
| resonant soft X-ray scattering | 95 |
| resonant X-ray magnetic scattering (RXMS) | 170, 171 |
| resonant X-ray scattering | 142, 143 |
| Rh/Al2O3 | 54 |
| rheology | 32, 187 |
| rhodium (Rh) | 17, 19, 21, 31, 33, 61 |
| ribosomal protein S1 | 238 |
| Rietveld analysis | 186 |
| rocking curve | 172 |
| Ru complex | 10 |
| Ruddlesden-Popper interface | 81 |
| |
| S-adenosyl-L-homocysteine hydrolase (SAHH) | 210 |
| salt-labile | 231 |
| salt-tolerance | 231 |
| SAXD (small angle X-ray diffraction) | 230 |
| SAXS | 32, 44, 105, 106, 114, 115, 117, 119, 121, 124, 129, 138, 139, 157, 158, 161, 164, 167, 208, 213, 216, 234, 238, 239, 240, 249, 255 |
| scanning tunnelling microscope (STM) | 43 |
| Schottky barrier height | 50 |
| selective solvent | 114 |
| selectivity | 166 |
| selenate | 265 |
| selenium (Se) | 265 |
| self-assembly | 6, 28, 206, 124, 185 |
| sequential extraction | 39 |
| serpentine | 162 |
| shear | 32 |
| shear effect | 138 |
| shock compression | 201 |
| shortchain dehydrogenase/reductase (SDR) | 205 |
| Si 2p | 67 |
| sialon | 128 |
| SiC | 160, 183 |
| SiGe | 53 |
| silica nanoparticle | 6 |
| silicide | 60 |
| silicon (Si) | 40, 55, 60, 263 |
| silicon alkoxide | 73 |
| silicon oxide | 67 |
| silsesquioxane | 151 |
| silver (Ag) | 20, 23, 55 |
| silver cluster | 20 |
| silver particles | 150, 158 |
| silver-ion-exchanged MFI | 20 |
| single crystal X-ray diffraction | 178, 192 |
| size effect | 159 |
| skeletal muscles | 203 |
| skutterudite | 194, 196, 198 |
| slow positron beam | 2 |
| soft X-ray | 72 |
| soft X-ray absorption spectra | 15 |
| solid/liquid interface | 77 |
| solution | 72, 213 |
| solution growth | 183 |
| solvent evaporation | 161 |
| sorption | 265 |
| spacial fluctuation | 163 |
| speciation | 39 |
| spin | 70, 268 |
| spin ARPES | 56, 70 |
| spin moment | 79, 86 |
| spin-orbit interaction | 57 |
| spinel | 102 |
| spinel oxide | 120 |
| spintoronics | 145 |
| spontaneous motion | 44 |
| SrRuO3 | 82 |
| SrVO3 | 80 |
| Staphylococcal nuclease (SNase) | 216 |
| Staphylococcus epidermidis | 174 |
| static disorder | 178 |
| statistical error | 271 |
| strain | 43 |
| strained Si | 263 |
| stream sediment | 39 |
| stress | 187 |
| stress-resistant microbes | 235 |
| structural phase transitions | 120 |
| structural transition | 156 |
| structure analysis | 35, 108 |
| structure-based design | 211 |
| substituent effect | 3 |
| substrate specificity | 247 |
| sugar | 6 |
| sulfidation | 22 |
| sulfide | 190 |
| sulfide glass | 122, 123 |
| super hydrous phase B | 192 |
| superconductivity | 85 |
| superconductor | 84, 91 |
| supercritical carbon dioxide | 150 |
| superlattice | 111, 143 |
| supersaturated Si | 134 |
| supported Ru complex | 11 |
| supramolecule | 5 |
| surface | 40, 70, 87 |
| surface electronic structure | 65 |
| surface metallization | 52 |
| surface oxide | 266 |
| surface state | 43 |
| surface structure | 55 |
| surface X-ray scattering | 77 |
| surfactant | 32, 44, 121 |
| symmetry breaking | 179 |
| |
| targeted nuclear irradiation | 253 |
| TbCo | 268 |
| TCO | 83 |
| tellurium (Te) | 19, 152 |
| temperature | 14, 15 |
| template synthesis | 6 |
| terbium fluoride (TbF3) | 25 |
| thallium (Tl) | 163 |
| thermal desorption | 67 |
| thermodynamics | 184 |
| thermoelectric material | 163 |
| Thermoplasma acidophilum | 205 |
| Thermus thermophilus | 238, 247, 248 |
| thin film | 41, 56, 70, 74, 80, 81, 82, 83, 96, 97, 109, 111, 112, 114, 131, 148, 168 |
| thorium (Th) | 146 |
| thorium fluoride (ThF4) | 29 |
| Threonyl-tRNA synthetase | 254 |
| ThrRS-1 | 254 |
| Ti2O3 | 100 |
| time-resolved X-ray diffraction | 201 |
| TiN/LaO/HfSiO/SiO2/Si | 46 |
| TiO2 | 83, 98, 99 |
| TiO2(110) | 63 |
| titanium (Ti) | 60, 266 |
| topological insulators | 70 |
| transcription regulation | 174 |
| transcriptional regulation | 174, 252 |
| transferase | 175 |
| transformation | 237 |
| transition metal | 122 |
| transparent conducting oxides | 96, 97 |
| transport | 237 |
| tritium (T) | 274 |
| tRNA | 232 |
| tunnel magnetoresistance | 101 |
| tunnel structure | 141 |
| |
| UbcH5b | 206 |
| ubiquitin | 206, 251 |
| ultraviolet photoelectron spectroscopy (UPS) | 166 |
| uranium (U) | 4, 207 |
| Ustilago sphaerogena | 219 |
| |
| vanadium pentaoxide | 200 |
| vasoconstriction | 260 |
| vasodilation | 259 |
| vesicle | 121 |
| virus capsid | 28 |
| visibility | 270 |
| visible light | 125 |
| |
| ω-scan | 271 |
| wall ion exchange | 36 |
| wastewater | 9 |
| water | 77 |
| water splitting | 125 |
| WAXS | 121, 124 |
| white X-ray diffraction | 78 |
| wide-angle X-ray diffraction (WAXD) | 110, 115, 116, 117 |
| |
| X-ray absorption spectroscopy (XAS) | 15, 45, 48, 51, 69, 95, 107, 133, 137, 140, 145, 160, 264 |
| X-ray contact microscopy | 222 |
| X-ray diffraction (XRD) | 5, 6, 7, 94, 103, 108, 111, 112, 130, 154, 156, 168, 178, 179, 181, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201 |
| X-ray emission spectroscopy (XES) | 84, 89, 100 |
| X-ray fiber diffraction | 203 |
| X-ray fluorescence (XRF) imaging | 229 |
| X-ray fluorescence holography | 163, 165 |
| X-ray imaging | 188 |
| X-ray magnetic diffraction | 79, 86 |
| X-ray photoelectron spectroscopy (XPS) | 73 |
| X-ray projection CT microscopy | 269 |
| X-ray Raman scattering | 100 |
| X-ray reflectivity | 131 |
| X-ray topography | 113, 153, 183, 263 |
| XAFS | 3, 4, 8, 9, 10, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31, 33, 34, 36, 38, 42, 54, 61, 76, 104, 109, 122, 123, 126, 127, 134, 135, 136, 141, 144, 146, 149, 150, 152, 160, 169, 229, 265 |
| XANES | 12, 16, 18, 26, 27, 30, 34, 36, 37, 39, 54, 59, 62, 118, 125, 128, 134, 141, 149, 151, 155, 169, 207, 215, 225, 229, 237, 256, 262 |
| xanthine oxidoreductase peroxiredoxin | 182 |
| xenon (Xe) | 20 |
| XMCD | 64, 145 |
| XPS | 13, 59, 133 |
| |
| yttrium (Y) | 23 |
| |
| zeolite | 20 |
| zinc (Zn) | 26 |
| zinc oxide (ZnO) | 52 |
| zirconium tungstate | 199 |
| zooming tube | 222 |
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]
Photon Factory Activity Report 2009
Copyright © 2010 by High Energy Accelerator Research Organization (KEK)